Skip to main content
Log in

Effect of magnetic field annealing on soft magnetic properties for (Fe0.5Co0.5)73.5Cu1Nb3Si13.5B9 alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of magnetic field annealing on crystallization and high-frequency/temperature soft magnetic properties is investigated for (Fe0.5Co0.5)73.5Cu1Nb3Si13.5B9 alloy. The applied magnetic field in the annealing process effectively facilitates the precipitation of ferromagnetic α-FeCo(Si) grains from the amorphous precursor and softens the magnetic properties, which are verified by the increase of crystalline volume fractions (Vcry) and the decrease of coercivity (HC), respectively. The initial permeability (μi) of sample annealed with applied field exhibits relatively higher value at elevated temperature, which is attributed to the intensive magnetic exchange coupling between the α-FeCo(Si) grains through the intergranular phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Murugaiyan, A. Abhinav, R. Verma, A.K. Panda, A. Mitra, S. Baysakh, R.K. Roy, Influence of Al addition on structure, crystallization and soft magnetic properties of DC Joule annealed FeCo based nanocrystalline alloys. J. Magn. Magn. Mater. 448, 66–74 (2018)

    Article  CAS  Google Scholar 

  2. R.K. Roy, A.K. Panda, A. Mitra, Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys. J. Magn. Magn. Mater. 418, 236–241 (2016)

    Article  CAS  Google Scholar 

  3. X.H. Li, Z. Wang, H.J. Duan, Effect of the partial substitution of FeCo by Ge on the magnetic properties of nanocrystalline (Fe0.8Co0.2)72.7Al0.8Si17.5Nb3Cu1B5 alloy. J. Non-Cryst. Solids. 522, 119555 (2019)

    Article  CAS  Google Scholar 

  4. C. Gómez-Polo, J.I. Pérez-Landazabal, V. Recarte, J. Camop, P. Marín, M. López, A. Hernando, High-temperature magnetic behavior of FeCo-based nanocrystalline alloys. Phys. Rev. B 66, 012401 (2002)

    Article  Google Scholar 

  5. T. Szumiata, B. Górka, A. Zorkovská, P. Sovák, Structure and hyperfine interactions in Al-doped FINEMET. J. Magn. Magn. Mater. 288, 37–47 (2005)

    Article  CAS  Google Scholar 

  6. N.Q. Hoa, N. Chau, S.-C. Yu, T.M. Thang, N.D. The, N.D. Tho, The crystallization and properties of alloys with Fe partly substituted by Cr and Cu fully substituted by Au in Finemet. Mater. Sci. Eng. A 449–451, 364–367 (2007)

    Article  Google Scholar 

  7. Y.M. Han, Z. Wang, X.H. Che, X.G. Chen, W.R. Li, Y.L. Li, Influence of Co content on the structure and magnetic permeability of nanocrystalline (Fe1-xCox)73.5Cu1Nb3Si13.5B9 alloy. Mater. Sci. Eng. B 156, 57–61 (2009)

    Article  CAS  Google Scholar 

  8. M.S. Lucas, W.C. Bourne, A.O. Sheets, L. Brunke, M.D. Alexander, J.M. Shank, E. Michel, S.L. Semiatin, J. Horwath, Z. Turgut, Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater. Sci. Eng. B 176, 1079–1084 (2009)

    Article  Google Scholar 

  9. K.H. Zheng, S.S. Yang, F. Zheng, F.L. Luo, J.M. Bai, J.W. Cao, F.L. Wei, Magnetic properties and high frequency characteristics of FeCoAlON alloy films. Phys. B 466–467, 26–30 (2015)

    Article  Google Scholar 

  10. B.W. Miao, Q. Luo, C.T. Chang, T. Liu, Y. Zhang, J. Shen, Effect of Co addition and annealing conditions on the magnetic properties of nanocrystalline FeCoSiBPCu ribbons. J. Magn. Magn. Mater. 477, 156–161 (2019)

    Article  CAS  Google Scholar 

  11. A. Kolano-Burian, L.K. Varga, R. Kolano, T. Kulik, J. Szynowaski, High-frequency soft magnetic properties of Finemet modified with Co. J. Magn. Magn. Mater. 316, e820–e822 (2007)

    Article  CAS  Google Scholar 

  12. R.M. Shi, Z. Wang et al., Influence of magnetic field annealing on saturation magnetostriction and μi~T curves for FeCo-based nanocrystalline alloy. J. Appl. Phys 109, 07A328 (2011)

    Article  Google Scholar 

  13. C.L. Zhao, A.D. Wang, S.Q. Yue, T. Liu, A.N. He, C.T. Chang, X.M. Zang, C.T. Liu, Significant improvement of soft magnetic properties for Fe(Co)BPSiC amorphous alloys by magnetic field annealing. J. Alloy. Comp 742, 220–225 (2018)

    Article  CAS  Google Scholar 

  14. X.D. Fan, M. Li, T. Zhang, C.C. Yuan, B.L. Shen, Effect of magnetic field annealing on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys with low permeability. AIP Adv. 8, 056105 (2018)

    Article  Google Scholar 

  15. Q.Q. Hao, Z. Wang, Y. Zhang, X.H. Li, R.M. Shi, Effect of vacuum annealing and heating–cooling cycle annealing on the soft magnetic properties at room-and high-temperatures for nanocrystalline FeCoAlSiBCuNb alloy. J. Mater. Sci 23, 21813–21819 (2020)

    Google Scholar 

  16. A.S. Vorokh, Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems 9, 364–369 (2018)

    CAS  Google Scholar 

  17. D. Wang, L.X. Wang, R. Melnik, A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence. J. Magn. Magn. Mater 410, 144–149 (2016)

    Article  CAS  Google Scholar 

  18. X.B. Zhai, L. Zhu, H. Zheng, Y.D. Dai, J.K. Chen, Y.G. Wang, F.M. Pan, Optimization of crystallization, microstructure and soft magnetic properties of Fe-B-Cu alloys by rapid cyclic annealing. J. Alloy. Comp 768, 591–597 (2018)

    Article  CAS  Google Scholar 

  19. C. Gómez-Polo, P. Marín, L. Pascual, A. Hernando, M. Vázquez, Structural and magnetic properties of nanocrystalline Fe73.5-xCoxSi13.5B9CuNb3 alloys. Phys. Rev. B 65, 024433 (2001)

    Article  Google Scholar 

  20. K.-Y. He, Optimum condition for magnetic properties of two-phase soft magnetic alloys. J. Appl. Phys 110, 043925 (2011)

    Article  Google Scholar 

  21. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), Chap. 10.

  22. K. Suzuki, J.M. Cadogan, Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys. Rev. B 58, 2730–2739 (1998)

    Article  CAS  Google Scholar 

  23. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  CAS  Google Scholar 

  24. X.H. Ma, Z. Wang et al., Microstructure and high-temperature soft magnetic properties of nanocrystalline (Fe0.65Co0.35)78.4Si9B9Nb2.6Cu1 alloy. Mater. Sci. Eng. A 448, 216–226 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (under Grant No. 51271130), Scientific and Technological Research Project of Colleges and Universities in Hebei Province of China (under Grant No. QN2019314), and Key Research Project of Handan University (under Grant No. 2017103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rm., Wang, Z. Effect of magnetic field annealing on soft magnetic properties for (Fe0.5Co0.5)73.5Cu1Nb3Si13.5B9 alloy. J Mater Sci: Mater Electron 32, 11877–11882 (2021). https://doi.org/10.1007/s10854-021-05817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05817-6

Navigation