Skip to main content
Log in

High mobility transparent and conducting oxide films of La-doped SrSnO\(_3\)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis and characterization of high mobility thin films of La-doped SrSnO\(_3\) are reported. The mobility for the \(7\%\) La-doped sample was found to be 228 cm\(^2\)V\(^{-1}\)s\(^{-1}\). The observed high mobility was associated with the reduced carrier effective mass and scattering centers of various scattering mechanisms. The enhancement in mobility and the increase in carrier concentration after doping reduced the resistivities of the thin films by five orders of magnitude. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy revealed that La-dopant and oxygen vacancies donated the electrons in the films. Films were highly transparent \((> 90\%)\) in the visible region. These materials have great potential to be used in optoelectronic and heterostructure devices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author (APS).

References

  1. T. Minami, MRS Bull. 25(8), 38–44 (2000). https://doi.org/10.1557/mrs2000.149

    Article  CAS  Google Scholar 

  2. D.S. Ginley, C. Bright, MRS Bull. 25(8), 15–18 (2000). https://doi.org/10.1557/mrs2000.256

    Article  CAS  Google Scholar 

  3. K.P. Ong, X. Fan, A. Subedi, M.B. Sullivan, D.J. Singh, APL Mater. 3(6), 062505 (2015). https://doi.org/10.1063/1.4919564

    Article  CAS  Google Scholar 

  4. Y. Kumar, R. Kumar, K. Asokan, A.P. Singh, A. I. P. conf. Proc. 2142(1), 080004 (2019). https://doi.org/10.1063/1.5122432

    Article  CAS  Google Scholar 

  5. Y. Kumar, R. Kumar, R.J. Choudhary, A. Thakur, A.P. Singh, Ceram. Int. 4617569, 11 (2020). https://doi.org/10.1016/j.ceramint.2020.04.056

    Article  CAS  Google Scholar 

  6. T.J. Coutts, D.L. Young, X. Li, MRS Bull. 25(8), 58–65 (2000). https://doi.org/10.1557/mrs2000.152

    Article  CAS  Google Scholar 

  7. R.G. Gordon, MRS Bull. 25(8), 52–57 (2000). https://doi.org/10.1557/mrs2000.151

    Article  CAS  Google Scholar 

  8. Y. Kumar, A.P. Singh, A.I.P. Conf. Proc. 2220(1), 090009 (2020). https://doi.org/10.1063/5.0001523

    Article  CAS  Google Scholar 

  9. R.P. Wang, C.J. Tao, J. Cryst. Growth 245(1), 63 (2002). https://doi.org/10.1016/S0022-0248(02)01646-9

    Article  CAS  Google Scholar 

  10. D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104(1), 011910 (2014). https://doi.org/10.1063/1.4861838

    Article  CAS  Google Scholar 

  11. H.R. Liu, J.H. Yang, H.J. Xiang, X.G. Gong, S.H. Wei, Appl. Phys. Lett. 102(11), 112109 (2013). https://doi.org/10.1063/1.4798325

    Article  CAS  Google Scholar 

  12. H.J. Kim, U. Kim, H.M. Kim, T.H. Kim, H.S. Mun, B.G. Jeon, K.T. Hong, W.J. Lee, C. Ju, K.H. Kim, K. Char, Appl. Phys. Express 5(6), 061102 (2012). https://doi.org/10.1143/apex.5.061102

    Article  Google Scholar 

  13. M. Wei, A.V. Sanchela, B. Feng, Y. Ikuhara, H.J. Cho, H. Ohta, Appl. Phys. Lett. 116(2), 022103 (2020). https://doi.org/10.1063/1.5128410

    Article  CAS  Google Scholar 

  14. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon 8(7), 506 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  15. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 24(1), 3 (2016). https://doi.org/10.1002/pip.2728

    Article  Google Scholar 

  16. H. Wang, X. Jiao, Q. Liu, X. Xuan, F. Chen, W. Wu, J. Phys. D 43, 035403 (2010). https://doi.org/10.1088/0022-3727/43/3/035403

    Article  CAS  Google Scholar 

  17. Q. Liu, J. Dai, X. Zhang, G. Zhu, Z. Liu, G. Ding, Thin Solid Films 519(18), 6059 (2011). https://doi.org/10.1016/j.tsf.2011.03.038

    Article  CAS  Google Scholar 

  18. E. Baba, D. Kan, Y. Yamada, M. Haruta, H. Kurata, Y. Kanemitsu, Y. Shimakawa, J. Phys. D 48(45), 455106 (2015). https://doi.org/10.1088/0022-3727/48/45/455106

    Article  CAS  Google Scholar 

  19. Q. Liu, F. Jin, G. Gao, W. Wang, J. Alloys Compd. 717, 62 (2017). https://doi.org/10.1016/j.jallcom.2017.05.080

    Article  CAS  Google Scholar 

  20. B. Hadjarab, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 68, 1491 (2007). https://doi.org/10.1016/j.jpcs.2007.03.013

    Article  CAS  Google Scholar 

  21. W. Zhang, J. Tang, J. Ye, J. Mater. Res. 22(7), 1859 (2007). https://doi.org/10.1557/jmr.2007.0259

    Article  CAS  Google Scholar 

  22. J.H. Kim, A.M. Grishin, H.H. Radamson, Thin Solid Films 515(2), 411 (2006). https://doi.org/10.1016/j.tsf.2005.12.222

    Article  CAS  Google Scholar 

  23. A.V. Sanchela, M. Wei, H. Zensyo, B. Feng, J. Lee, G. Kim, H. Jeen, Y. Ikuhara, H. Ohta, Appl. Phys. Lett. 112(23), 232102 (2018). https://doi.org/10.1063/1.5033326

    Article  CAS  Google Scholar 

  24. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  25. S. Basu, D.K. Patel, J. Nuwad, V. Sudarsan, S.N. Jha, D. Bhattacharyya, R.K. Vatsa, S.K. Kulshreshtha, Chem. Phys. Lett. 561, 82 (2013). https://doi.org/10.1016/j.cplett.2013.01.031

    Article  CAS  Google Scholar 

  26. A.L. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  27. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6(1), 6 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  28. R. Tholkappiya, K. Vishista, F. Hamad, Pramana 88(2), 27 (2017). https://doi.org/10.1007/s12043-016-1325-4

    Article  CAS  Google Scholar 

  29. P. vander Heide, Q. Jiang, Y. Kim, J. Rabalais, Surf. Sci. 473(1), 59 (2001). https://doi.org/10.1016/S0039-6028(00)00954-7

    Article  CAS  Google Scholar 

  30. F. Zhong, H. Zhuang, Q. Gu, J. Long, RSC Adv. 6, 42474 (2016). https://doi.org/10.1039/C6RA05614H

    Article  CAS  Google Scholar 

  31. V.V. Atuchin, J.C. Grivel, Z. Zhang, Chem. Phys. 360(1), 74 (2009). https://doi.org/10.1016/j.chemphys.2009.04.010

    Article  CAS  Google Scholar 

  32. V.V. Atuchin, E.N. Galashov, O.Y. Khyzhun, A.S. Kozhukhov, L.D. Pokrovsky, V.N. Shlegel, Cryst. Growth Des. 11(6), 2479 (2011). https://doi.org/10.1021/cg200265p

    Article  CAS  Google Scholar 

  33. T. Hashemi, J. Illingsworth, F. Golestani-Fard, J. Am. Ceram. Soc. 74(3), 662 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04078.x

    Article  CAS  Google Scholar 

  34. A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. M. F. deGroot, M. T. Czyzyk, J. C. Fuggle, O. Strebel, F. Lopez, M. Domke, G. Kaindl, Phys. Rev. B 46, 9841 (1992). https://doi.org/10.1103/PhysRevB.46.9841

    Article  CAS  Google Scholar 

  35. H.L. Ju, H.C. Sohn, K.M. Krishnan, Phys. Rev. Lett. 79, 3230 (1997). https://doi.org/10.1103/PhysRevLett.79.3230

    Article  CAS  Google Scholar 

  36. V. Sharma, R. Vyas, P. Bazylewski, G.S. Chang, K. Asokan, K. Sachdev, RSC Adv. 6, 29135 (2016). https://doi.org/10.1039/C5RA24422F

    Article  CAS  Google Scholar 

  37. H. Chen, Int. J. Photoenergy 2014, 643532 (2014). https://doi.org/10.1155/2014/643532

    Article  CAS  Google Scholar 

  38. W.F. Zhang, J. Tang, J. Ye, Chem. Phys. Lett. 418, 174 (2006). https://doi.org/10.1016/j.cplett.2005.10.122

    Article  CAS  Google Scholar 

  39. K.D. Singh, R. Pandit, R. Kumar, Solid State Sci. 85, 70 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.10.001

    Article  CAS  Google Scholar 

  40. I.N. Demchenko, M. Chernyshova, T. Tyliszczak, J. Denlinger, K.M. Yu, D. Speaks, O. Hemmers, W. Walukiewicz, G. Derkachov, K. Lawniczak-Jablonska, J. Electron Spectrosc. 184, 249–253 (2011). https://doi.org/10.1016/j.elspec.2010.09.011

    Article  CAS  Google Scholar 

  41. N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32(5), 961 (1975). https://doi.org/10.1080/14786437508221667

    Article  CAS  Google Scholar 

  42. A.S. Hassanien, A.A. Akl, J. Non-Cryst. Solids 487, 28 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.02.018

    Article  CAS  Google Scholar 

  43. K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids 76, 64 (2015). https://doi.org/10.1016/j.jpcs.2014.07.024

    Article  CAS  Google Scholar 

  44. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5(8), 993 (2015). https://doi.org/10.1007/s13204-015-0400-3

    Article  CAS  Google Scholar 

  45. Y. Gao, J. Wang, L. Wu, S. Bao, Y. Shen, Y. Lin, C. Nan, Sci. China Mater. 58(4), 302 (2015). https://doi.org/10.1007/s40843-015-0047-0

    Article  CAS  Google Scholar 

  46. N.M. Ahmed, F.A. Sabah, H.I. Abdulgafour, A. Alsadig, A. Sulieman, M. Alkhoaryef, Results Phys. 13, 102159 (2019). https://doi.org/10.1016/j.rinp.2019.102159

    Article  Google Scholar 

  47. M. Islam, K.S. Rahman, H. Misran, N. Asim, M.S. Hossain, M. Akhtaruzzaman, N. Amin, Results Phys. 14, 102518 (2019). https://doi.org/10.1016/j.rinp.2019.102518

    Article  Google Scholar 

  48. K. Kamala Bharathi, N. R. Kalidindi, C. V. Ramana, J. Appl. Phys. 108(8), 083529 (2010). https://doi.org/10.1063/1.3499325

    Article  CAS  Google Scholar 

Download references

Funding

The authors (YK and APS) wish to acknowledge the UGC-DAE Consortium for Scientific Research, Indore for providing financial support to carry out this work under the CRS project (Ref. No. CSR-IC-267/2017-18/1348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Kumar, R., Asokan, K. et al. High mobility transparent and conducting oxide films of La-doped SrSnO\(_3\). J Mater Sci: Mater Electron 32, 11835–11844 (2021). https://doi.org/10.1007/s10854-021-05813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05813-w

Navigation