Skip to main content
Log in

Conductive self-standing nanofiber fabric of fluorine-doped tin oxide prepared by electrospinning for use in flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To realize a conductive substrate with heat resistance and flexibility for the application to flexible electronics, we aimed to reduce the resistance of the fluorine-doped tin oxide (FTO) ceramic nanofiber (NF) non-woven fabrics produced by the electrospinning method. Using NH4F and SnF2 as the raw materials for fluorine doping, the structure and electrical properties of FTO-NF non-woven fabric were compared. The non-woven fabrics obtained in both solutions were several cm square made by NFs with a diameter of 150~800 nm, and all NFs consisted of nanoparticles with a diameter of about 20 nm. The resistivity of the FTO-NF fabric could be reduced to \(5.19 ~\mathrm{\Omega \cdot cm}\) by the improvements such as adding tin isopropoxide and mixing without using water for a solvent without making a precursor of FTO so that the raw material is uniformly adsorbed on the polymer in the solution. By considering the space occupancy of the NFs in the fabric, the minimum net resistivity of the FTO-NF fabric was estimated to be \(0.56 ~ \mathrm{\Omega \cdot cm}\). Since the obtained FTO fabric was brittle and cracked when bent, we made a prototype of a three-layer NF non-woven fabric composited with amorphous SiO2 NFs. The sheet resistance was \(6.4 ~\mathrm{k\Omega /sq}\), no cracks or breaks occurred even when wrapped around a glass rod with a diameter of 5 mm\(\phi\), and the rate of increase in the resistance after 100 bends could be suppressed to 4.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Fernandes, A. Santa, A. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins, E. Fortunato, P. Barquinha, Adv. Electron. Mater. 4, 1800032 (2018)

    Article  Google Scholar 

  2. B.C. Jang, Y. Nam, B.J. Koo, J. Choi, S.G. Im, S.K. Park, S. Choi, Adv. Funct. Mater. 28, 1704725 (2018)

  3. J. Kim, H.J. Shim, J. Yang, M.K. Choi, D.C. Kim, J. Kim, T. Hyeon, D. Kim, Adv. Mater. 29, 1700217 (2017)

  4. J.H. Park, H.E. Lee, C.K. Jeong, D.H. Kim, S.K. Hong, K. Park, L.J. Lee, Nano Energy 56, 531–546 (2019)

    Article  CAS  Google Scholar 

  5. X. Wang, M. Xi, H. Fong, Z. Zhu, A.C.S. Appl, Mater. Interfaces 6, 15925–15932 (2014)

    Article  CAS  Google Scholar 

  6. J.H. Wendorff, S. Agarwal, A. Greiner, Electrospinning, Materials, Processing, and Applications (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  7. M.M. Munir, F. Iskandar, K.M. Yun, K. Okuyama, M. Abdullah, Nanotechnology 19, 145603 (2008)

    Article  Google Scholar 

  8. F. Iskandar, A.B. Suryamas, M. Kawabe, M.M. Munir, K. Okuyama, T. Tarao, T. Nishitani, J. Appl. Phys. 49, 010213 (2010)

    Article  Google Scholar 

  9. M. Shahhosseininiaa, S. Bazgirb, M. DaliriJouparic, Math. Sci. Eng. 91, 502 (2018)

    Google Scholar 

  10. D. Li, Y. Xia, Nano Lett. 3, 555–560 (2003)

  11. M.M. Munir, H. Widiyandari, F. Iskandar, K. Okuyama, Nanotechnology 19, 375601 (2008)

    Article  Google Scholar 

  12. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  13. Y. Horie, T. Watanabe, M. Deguchi, D. Asakura, T. Nomiyama, Electrochim. Acta 105, 394 (2013)

    Article  CAS  Google Scholar 

  14. S. Guo, Y. Horie, S. Imada, M.Z. Bin Mukhlish, T. Nomiyama, J. Mater. Sci. 28, 13084 (2017)

  15. M.Z. Bin Mukhlish, Y. Horie, K. Higashi, A. Ichigi, S. Guo, T. Nomiyama, Ceram. Int. 43, 8146 (2017)

  16. M.J. Alam, D.C. Cameron, Thin Solid Films 420–421, 76 (2002)

    Article  Google Scholar 

  17. A. Moholkar, S. Pawar, K. Rajpure, C. Bhosale, J. Kim, Appl. Surf. Sci. 255, 9358 (2009)

    Article  CAS  Google Scholar 

  18. B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang, W. Huang, X. Yu, C. Yu, T.J. Marks, A. Facchetti, Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8

    Article  CAS  Google Scholar 

  19. M. Xi, X. Wang, Y. Zhao, Z. Zhu, H. Fong, Appl. Phys. Lett. 104, 133102 (2014)

    Article  Google Scholar 

  20. A. Kumara, K. Ranasinghe, N. Jayaweera, N. Bandara, M. Okuya, G. Rajapakse, J. Phys. Chem. C 118, 16479 (2014)

    Article  CAS  Google Scholar 

  21. S. Chen, H. Du, Y. Wei, L. Peng, Y. Li, L. Gan, F. Kang, Int. J. Electrochem. Sci. 12, 6221 (2017)

    Article  CAS  Google Scholar 

  22. X. Xia, X.J. Dong, Q.F. Wei, Y.B. Cai, K.Y. Lu, Polym. Lett. 6, 169 (2012)

    Article  CAS  Google Scholar 

  23. Z. Banyamin, P. Kelly, G. West, J. Boardman, Coatings 4, 732 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 23360042, 16K04901, and 20K05344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Horie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshinaga, K., Horie, Y., Ichigi, A. et al. Conductive self-standing nanofiber fabric of fluorine-doped tin oxide prepared by electrospinning for use in flexible electronics. J Mater Sci: Mater Electron 32, 11823–11834 (2021). https://doi.org/10.1007/s10854-021-05812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05812-x

Navigation