Skip to main content
Log in

Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish l-tryptophan and d-tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of d-tryptophan and l-tryptophan in spiked serum and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kameta, J. Dong, H. Yui, Thermoresponsive PEG-coated nanotubes as chiral selectors of amino acids and peptides. Small 14, 1800030 (2018)

    Article  Google Scholar 

  2. M. Matuschek, D.P. Singh, H.H. Jeong, M. Nesterov, T. Weiss, P. Fischer, N. Liu, Chiral plasmonic hydrogen sensors. Small 14, 1702990 (2018)

    Article  Google Scholar 

  3. Y.S. Jang, M. Dieckmann, N. Cramer, Cooperative effects between chiral Cpx-iridium (III) catalysts and chiral carboxylic acids in enantioselective C-H amidations of phosphine oxides. Angew. Chem. Int. Ed. 56, 15088–15092 (2017)

    Article  CAS  Google Scholar 

  4. W.H. Pirkle, J.M. Finn, J.L. Schreiner, B.C. Hamper, A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J. Am. Chem. Soc. 103, 3964–3966 (1981)

    Article  CAS  Google Scholar 

  5. Y. Wang, X. Zhou, C. Xu, Y. Jin, B. Li, Gold nanorods as visual sensing platform for chiral recognition with naked eyes. Sci. Rep. 8, 5296 (2018)

    Article  Google Scholar 

  6. L. Zhang, C. Xu, C. Liu, B. Li, Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal. Chim. Acta 809, 123–127 (2014)

    Article  CAS  Google Scholar 

  7. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands. Talanta 175, 451–456 (2017)

    Article  CAS  Google Scholar 

  8. B. Chankvetadze, Contemporary theory of enantioseparations in capillary electrophoresis. J. Chromatogr. A 1567, 2–25 (2018)

    Article  CAS  Google Scholar 

  9. C. Wang, X. Wu, L. Pu, A highly fluorinated chiral aldehyde for enantioselective fluorescent recognition in a biphasic system. Chem. Eur. J. 23, 10749–10752 (2017)

    Article  CAS  Google Scholar 

  10. J.D. Zhang, K.M. Kabir, W.A. Donald, Metal-ion free chiral analysis of amino acids as small as proline using high-definition differential ion mobility mass spectrometry. Anal. Chim. Acta 1036, 172–178 (2018)

    Article  CAS  Google Scholar 

  11. X.T. Kong, L. Khosravi Khorashad, Z. Wang, A.O. Govorov, Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett. 18, 2001–2008 (2018)

    Article  CAS  Google Scholar 

  12. X. Niu, X. Yang, Z. Mo, R. Guo, N. Liu, P. Zhao, M. Ouyang, Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim. Acta 297, 650–659 (2019)

    Article  CAS  Google Scholar 

  13. D. Wu, W. Tan, H. Li, Z. Lei, L. Deng, Y. Kong, A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Analyst 144, 543–549 (2019)

    Article  CAS  Google Scholar 

  14. X. Shi, Y. Wang, C. Peng, Z. Zhang, J. Chen, X. Zhou, H. Jiang, Enantiorecognition of tyrosine based on a novel magnetic electrochemical chiral sensor. Electrochim. Acta 241, 386–394 (2017)

    Article  CAS  Google Scholar 

  15. J. Zou, X.Q. Chen, G.Q. Zhao, X.Y. Jiang, F.P. Jiao, J.G. Yu, A novel electrochemical chiral interface based on the synergistic effect of polysaccharides for the recognition of tyrosine enantiomers. Talanta 195, 628–637 (2019)

    Article  CAS  Google Scholar 

  16. X. Niu, X. Yang, Z. Mo, R. Guo, N. Liu, P. Zhao, Z. Liu, Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry 129, 189–198 (2019)

    Article  CAS  Google Scholar 

  17. L. Bao, J. Dai, L. Yang, J. Ma, Y. Tao, L. Deng, Y. Kong, Electrochemical recognition of tyrosine enantiomers based on chiral ligand exchange with sodium alginate as the chiral selector. J. Electrochem. Soc. 162, H486–H491 (2015)

    Article  CAS  Google Scholar 

  18. L. Bao, X. Chen, B. Yang, Y. Tao, Y. Kong, Construction of electrochemical chiral interfaces with integrated polysaccharides via amidation. ACS Appl. Mater. Interfaces 8, 21710–21720 (2016)

    Article  CAS  Google Scholar 

  19. T. Liang, G. Sun, L. Cao, J. Li, L. Wang, A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloid 87, 858–868 (2019)

    Article  CAS  Google Scholar 

  20. H. Liang, L. He, B. Zhou, B. Li, J. Li, Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery. Colloid Surf. B 156, 19–28 (2017)

    Article  CAS  Google Scholar 

  21. H. Peng, G. Ma, W. Ying, A. Wang, H. Huang, Z. Lei, In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors. J. Power Sources 211, 40–45 (2012)

    Article  CAS  Google Scholar 

  22. R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H.M. Cheng, The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31, 1800863 (2018)

    Article  Google Scholar 

  23. T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi, Quantitative principles for precise engineering of sensitivity in graphene electrochemical sensors. Adv. Mater. 31, 1805752 (2018)

    Article  Google Scholar 

  24. R. Ishikawa, S.D. Findlay, T. Seki, G. Sánchez-Santolino, Y. Kohno, Y. Ikuhara, N. Shibata, Direct electric field imaging of graphene defects. Nat. Commun. 9, 3878 (2018)

    Article  Google Scholar 

  25. G. Zhu, Y. Ge, Y. Dai, X. Shang, J. Yang, J. Liu, Size-tunable polyaniline nanotube-modified electrode for simultaneous determination of Pb (II) and Cd (II). Electrochim. Acta 268, 202–210 (2018)

    Article  CAS  Google Scholar 

  26. X. Wu, L. Tang, S. Zheng, Y. Huang, J. Yang, Z. Liu, M. Yang, Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power Sources 397, 189–195 (2018)

    Article  CAS  Google Scholar 

  27. P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D Graphene/Nanostructured conductive polymer hydrogels. Adv. Mater. 30, 1800124 (2018)

    Article  Google Scholar 

  28. M.J. Yoo, H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 141, 515–52228 (2019)

    Article  CAS  Google Scholar 

  29. B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao, D. Guo, H. Jin, Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018)

    Article  CAS  Google Scholar 

  30. H. Zengin, W. Zhou, J. Jin, R. Czerw, D.W. Smith Jr., L. Echegoyen, J. Ballato, Carbon nanotube doped polyaniline. Adv. Mater. 14, 1480–1483 (2002)

    Article  CAS  Google Scholar 

  31. C. Agustina, M.R. Úrsula, C. Patricia, V. Analía, L.F. María, Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocolloids 75, 147–156 (2018)

    Article  Google Scholar 

  32. H.A. Benesi, J.H.J. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (51262027, 21861034); the Natural Science Foundation of Gansu Province, China (18JR3RA094); the Science and Technology Project Gansu Province, China (20YF3GA022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Niu, X., Yang, X. et al. Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers. J Mater Sci: Mater Electron 32, 11791–11804 (2021). https://doi.org/10.1007/s10854-021-05809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05809-6

Navigation