Skip to main content
Log in

Thin and temperature-resistant TiO2–Sr1−xLaxTiO3 (x = 0.1–0.3) composite ceramics for microwave absorption in the X-band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, high-temperature stability is a challenge in a number of microwave absorption materials. Hence, researchers are still searching for a novel material system preferably with a high-temperature resistance to be applied in the field of microwave absorption. Here, in the current study, toward this aim, lanthanum (La)-doped strontium titanate (SrTiO3) blended with TiO2 were fabricated by hot-press sintering in a vacuum. The as-prepared samples are denoted as TiO2–Sr1−xLaxTiO3 with x varying from 0.1 to 0.3 in steps of 0.1. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and microwave vector network analyzer were carried out to study their morphology, phase composition, structure, and electromagnetic and microwave absorption properties, respectively. It is revealed that the La atom was efficiently doped at the Sr-site in SrTiO3. Benefiting from the tunability of its dielectric and impedance properties, TiO2–Sr1−xLaxTiO3 can be utilized in a highly efficient way to absorb microwave radiations with a decent design. Results illustrated that TiO2–Sr1−xLaxTiO3 (x = 0.2) with a thickness of only 0.42 mm exhibits a high microwave absorption efficiency of −40.89 dB and can achieve a 2.82 GHz bandwidth of reflection loss value below −5 dB. Thus, TiO2–Sr1−xLaxTiO3 composites ceramics can be served as an opening opportunity for the application of high-temperature stability and tunable high-performance effectiveness microwave absorption materials in stealth technology and information security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Qing, Y. Li, W. Li, H. Yao, J. Mater. Chem. C 9, 1205–1214 (2021)

    Article  CAS  Google Scholar 

  2. Y. Zhou, L. Ma, R. Li, D. Chen, Y. Lu, Y. Cheng, X. Luo, H. Xie, W. Zhou, J. Magn. Magn. Mater. 524, 167681 (2021)

    Article  CAS  Google Scholar 

  3. X. Yang, Y. Duan, Y. Zeng, H. Pang, G. Ma, X. Dai, J. Mater. Chem. C 8, 1583–1590 (2020)

    Article  CAS  Google Scholar 

  4. H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, K. Ostrikove, Appl. Mater. Today 19, 100596 (2020)

    Article  Google Scholar 

  5. L. Zhou, J. Qiu, X. Wang, H. Wang, Z. Wang, D. Fang, Z. Li, Ceram. Int. 46, 19731–19737 (2020)

    Article  CAS  Google Scholar 

  6. K. Pan, T. Leng, J. Song, C. Ji, J. Zhang, J. Li, K.S. Novoselov, Z. Hu, Carbon 160, 307–316 (2020)

    Article  CAS  Google Scholar 

  7. N. Pryds, V. Esposito, Metal Oxide-Based Thin Film Structures, 1st edn. (Elsevier, Amsterdam, 2018), pp. 465–488

    Google Scholar 

  8. L. Fang, W. Dong, F. Zheng, M. Shen, J. Appl. Phys. 112, 034114 (2012)

    Article  Google Scholar 

  9. H. Xie, C. Yang, Y. Zhou, Z. Ren, P. Liu, J. Mater. Sci. 31, 16178–16188 (2020)

    CAS  Google Scholar 

  10. X. Wang, Q. Hu, L. Li, X. Lu, J. Appl. Phys. 112, 044106 (2012)

    Article  Google Scholar 

  11. C.D. Savaniu, J.T.S. Irvine, Solid State Ion. 192, 491–493 (2011)

    Article  CAS  Google Scholar 

  12. M. Qin, F. Gao, G. Dong, J. Xu, M. Fu, Y. Wang, M. Reece, H. Yan, J. Alloys Compd. 762, 80–89 (2018)

    Article  CAS  Google Scholar 

  13. Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551–2555 (2013)

    Article  CAS  Google Scholar 

  14. H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 368, 22–24 (2004)

    Article  CAS  Google Scholar 

  15. D. Liu, Y. Zhang, H. Kang, J. Li, Z. Chen, T. Wang, J. Eur. Ceram. Soc. 38, 807–811 (2018)

    Article  CAS  Google Scholar 

  16. J. Han, Q. Sun, Y. Song, J. Alloys Compd. 705, 22–27 (2017)

    Article  CAS  Google Scholar 

  17. D. Srivastava, C. Norman, F. Azough, M.C. Schäfer, E. Guilmeau, D. Kepaptsoglou, Q.M. Ramasse, G. Nicotra, R. Freer, Phys. Chem. Chem. Phys. 18, 26475–26486 (2016)

    Article  CAS  Google Scholar 

  18. M. Neuschitzer, J. Marquez, S. Giraldo, M. Dimitrievska, M. Placidi, I. Forbes, V. Izquierdo-Roca, A. Pérez-Rodriguez, E. Saucedo, J. Phys. Chem. C 120, 9661–9670 (2016)

    Article  CAS  Google Scholar 

  19. J. Chen, H. Lin, D. Hao, Y. Tang, X. Yi, Y. Zhao, S. Zhou, Scr. Mater. 162, 82–85 (2019)

    Article  CAS  Google Scholar 

  20. Q.L. Li, Y.F. Sun, Y.L. Sun, J.J. Wen, Y. Zhou, Q.M. Bing, L.D. Isaacs, Y.H. Jin, H. Gao, Y.W. Yang, Chem. Mater. 26, 6418–6431 (2014)

    Article  CAS  Google Scholar 

  21. A. Janotti, B. Jalan, S. Stemmer, C.G.V. Walle, Appl. Phys. Lett. 100, 262104 (2012)

    Article  Google Scholar 

  22. D.Y. Lu, Y. Yue, X.Y. Sun, J. Alloys Compd. 586, 136–141 (2014)

    Article  CAS  Google Scholar 

  23. R.Y. Jing, X.M. Chen, H.L. Lian, X.S. Qiao, X.J. Shao, J.P. Zhou, J. Eur. Ceram. Soc. 38, 3111–3117 (2018)

    Article  CAS  Google Scholar 

  24. A.J. Ahmed, M.S.A. Hossain, S.M.K.N. Islam, F. Yun, G. Yang, R. Hossain, A. Khan, J. Na, M. Eguchi, Y. Yamauchi, X.L. Wang, ACS Appl. Mater. Interfaces 12, 28057–28064 (2020)

    Article  CAS  Google Scholar 

  25. M.E. Pilleux, C.R. Grahmann, V.M. Fuenzalida, J. Am. Ceram. Soc. 77, 1601–1604 (1994)

    Article  CAS  Google Scholar 

  26. D.Q. Liu, Y.W. Zhang, H.J. Kang, J.L. Li, X. Yang, T.M. Wang, Chin. Phys. B 27, 047205 (2018)

    Article  Google Scholar 

  27. H. Wei, X. Yin, Z. Hou, F. Jiang, H. Xu, M. Li, L. Zhang, L. Cheng, J. Eur. Ceram. Soc. 38, 4189–4197 (2018)

    Article  CAS  Google Scholar 

  28. Q. Wen, W. Zhou, H. Gao, Y. Zhou, F. Luo, D. Zhu, Z. Huang, Y. Qing, Appl. Phys. A 125, 413 (2019)

    Article  Google Scholar 

  29. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)

    Article  Google Scholar 

  30. Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Carbon 86, 98–107s (2015)

    Article  CAS  Google Scholar 

  31. Q. Wen, W. Zhou, Y. Wang, Y. Qing, F. Luo, D. Zhu, Z. Huang, J. Mater. Sci. 52, 832–842 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51701148), Natural Science Foundation of Shaanxi Province (Grant Nos. 2019JQ-916 and 2020JQ-912), and Innovation and entrepreneurship training program for University Students (Grant No. S202011736018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wen, Q., Yang, C. et al. Thin and temperature-resistant TiO2–Sr1−xLaxTiO3 (x = 0.1–0.3) composite ceramics for microwave absorption in the X-band. J Mater Sci: Mater Electron 32, 11291–11299 (2021). https://doi.org/10.1007/s10854-021-05798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05798-6

Navigation