Skip to main content
Log in

Structural investigation in strontium titanate (SrTiO3) synthesized by gel-combustion method and in-gelation method: a TDPAC and XRD study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work reports the results of structural investigations on strontium titanate (STO), synthesized by two different methods, by time-differential perturbed angular correlation (TDPAC) technique and X-ray diffraction (XRD) technique. STO was synthesized by two different methods: gel-combustion and in-gelation (also known as internal gelation) method and the samples were doped with 181Hf as TDPAC probe to study local structure at cationic sites of Titanium. The XRD analysis of sample synthesized by gel-combustion method (hereafter referred to as STO-GC) was found to be pure STO phase whereas that synthesized by in-gelation method (hereafter referred to as STO-IG) was found to have titania (19.9% w/w) as impurity phase. TDPAC spectroscopy was found to be very sensitive method for revealing the presence of miniscule amount of rutile phase of TiO2 in STO-GC, which was difficult to detect by conventional XRD. TDPAC study on STO-IG showed the presence of only rutile TiO2 phase, which indicated preferential doping of TDPAC probe (181Hf) at Ti-site of rutile TiO2 than Ti-site of STO. Probable route of formation of rutile phase in STO obtained from in-gelation method has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S.J. Marshall, A.E. Becerra-Toledo, L.D. Marks, M.R. Castell, Defects at Oxide Surfaces (Springer, New York, 2015), pp. 327–349

    Book  Google Scholar 

  2. P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan, V. Ramakrishnan, J. Alloys Compd. 586, 456 (2014)

    Article  CAS  Google Scholar 

  3. Y. Okamoto, R. Fukui, M. Fukazawa, Y. Suzuki, Mater. Lett. 187, 111 (2017)

    Article  CAS  Google Scholar 

  4. R.V. Shende, D.S. Krueger, G.A. Rossetti, S.J. Lombardo, J. Am. Ceram. Soc. 84, 1648 (2001)

    Article  CAS  Google Scholar 

  5. D. Kopač, B. Likozar, M. Huš, ACS Catal. 10, 4092 (2020)

    Article  Google Scholar 

  6. G. Saravanan, K. Ramachandran, J. Gajendiran, E. Padmini, Chem. Phys. Lett. 746, 137314 (2020)

    Article  CAS  Google Scholar 

  7. Y.M. Itahashi, T. Ideue, Y. Saito, S. Shimizu, T. Ouchi, T. Nojima, Y. Iwasa, Sci. Adv. 6, 9120 (2020)

    Article  Google Scholar 

  8. S. Patial, V. Hasija, P. Raizada, P. Singh, A.A.P.K. Singh, A.M. Asiri, J. Environ. Chem. Eng. 8, 103791 (2020)

    Article  CAS  Google Scholar 

  9. M.A. Rahman, T. Ahmed, S. Walia, S. Sriram, M. Bhaskaran, Appl. Mater. Today 13, 126 (2018)

    Article  Google Scholar 

  10. A.I. Orlova, M.I. Ojovan, Materials 12, 2638 (2019)

    Article  CAS  Google Scholar 

  11. Y. Yang, S. Luo, F. Dong, Q. Chen, M. Yang, J. Radioanal. Nucl. Chem. 303, 341 (2015)

    Article  CAS  Google Scholar 

  12. D.S. Deak, Mater. Sci. Technol. 23, 127 (2007)

    Article  CAS  Google Scholar 

  13. E. Grabowska, Appl. Catal. B 186, 97 (2016)

    Article  CAS  Google Scholar 

  14. L.A. Crosby, B.R. Chen, R.M. Kennedy, J. Wen, K.R. Poeppelmeier, M.J. Bedzyk, L.D. Marks, Chem. Mater. 30, 841 (2018)

    Article  CAS  Google Scholar 

  15. A.M. Youssef, H.K. Farag, A. El-Kheshen, F.F. Hammad, SILICON 10, 1225 (2018)

    Article  CAS  Google Scholar 

  16. A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, J. Mater. Chem. A 5, 3909 (2017)

    Article  CAS  Google Scholar 

  17. A. Kaur, L. Singh, K. Asokan, Ceram. Int. 44, 3751 (2018)

    Article  CAS  Google Scholar 

  18. L. Sygellou, H. Tielens, C. Adelmann, S. Ladas, Microelectron. Eng. 90, 138 (2012)

    Article  CAS  Google Scholar 

  19. A. Anspoks, C. Marini, T. Miyanaga, B. Joseph, A. Kuzmin, J. Purans, J. Timoshenko, A. Bussmann-Holder, Radiat. Phys. Chem. 175, 108072 (2020)

    Article  CAS  Google Scholar 

  20. I.A. Sluchinskaya, A.I. Lebedev, J. Alloys Compd. 820, 153243 (2020)

    Article  CAS  Google Scholar 

  21. M.V. Rudenko, T.F. Raichynok, Y.V. Radush, A. Podhorodecki, V.K. Ilkov, Int. J. Nanosci. 18, 1 (2019)

    Google Scholar 

  22. M.L. Crespillo, J.T. Graham, F. Agulló-López, Y. Zhang, W.J. Weber, J. Phys. Chem. C 121, 19758 (2017)

    Article  CAS  Google Scholar 

  23. Y. Jin, X. Li, Y. Hao, J. Li, Z. Wang, Wuhan Univ. J. Nat. Sci. 24, 417 (2019)

    CAS  Google Scholar 

  24. H. Frauenfelder, R.M. Steffen, Alpha, Beta Gamma-Ray Spectroscopy, vol. 2 (North-Holland Publishing company, Amsterdam, 1965), p. 997

    Google Scholar 

  25. M. Zacate, H. Jaeger, Defect Diffus. Forum 311, 3 (2011)

    Article  CAS  Google Scholar 

  26. J. Schell, S. Kamba, M. Kachlik, K. Maca, J. Drahokoupil, B. R. Rano, J. Nuno Gonçalves, T. Thanh Dang, A. Costa, C. Noll, R. Vianden, D. C. Lupascu, AIP Adv. 9, 125125 (2019)

    Article  Google Scholar 

  27. A. López-García, R.E. Alonso, M. Falabella, G. Echeverria, Ferroelectrics 396, 37 (2010)

    Article  Google Scholar 

  28. K. Sedeek, S.A. Said, T.Z. Amer, N. Makram, H. Hantour, Ceram. Int. 45, 1202 (2019)

    Article  CAS  Google Scholar 

  29. A.V. Sobolev, A.V. Bokov, W. Yi, A.A. Belik, I.A. Presniakov, I.S. Glazkova, J. Exp. Theor. Phys. 129, 896 (2019)

    Article  CAS  Google Scholar 

  30. O.A. Dicks, A.L. Shluger, P.V. Sushko, P.B. Littlewood, Phys. Rev. B 93, 134114 (2016)

    Article  Google Scholar 

  31. D.V. Azamat, A.G. Badalyan, P.G. Baranov, V.A. Trepakov, M. Hrabovsky, L. Jastrabik, A. Dejneka, J. Appl. Phys. 124, 124101 (2018)

    Article  Google Scholar 

  32. D. Banerjee, R. Guin, S.K. Das, S.V. Thakare, J. Radioanal. Nucl. Chem. 290, 119 (2011)

    Article  CAS  Google Scholar 

  33. G.N. Darriba, L.A. Errico, P.D. Eversheim, G. Fabricius, M. Rentería, Phys. Rev. B 79, 115213 (2009)

    Article  Google Scholar 

  34. M. Sahu, S. Mukherjee, M. Keskar, K. Krishnan, S. Dash, B.S. Tomar, Thermochim. Acta 663, 215 (2018)

    Article  CAS  Google Scholar 

  35. A. Kumar, J. Radhakrishna, N. Kumar, R.V. Pai, J.V. Dehadrai, A.C. Deb, S.K. Mukerjee, J. Nucl. Mater. 434, 162 (2013)

    Article  CAS  Google Scholar 

  36. J. Rodriguez-Carvajal, Physica B: Cond. Matt. 192, 55 (1993)

    Article  CAS  Google Scholar 

  37. A. Chatterjee, A. Kumar, K. Ramachandran, In Proc. DAE-BRNS symp. Nucl. Phys. 55, 756 (2013)

    Google Scholar 

  38. B. Lindgren, Hyperfine Interact. C, 613 (1996)

    Google Scholar 

  39. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  CAS  Google Scholar 

  40. Y. Zhang, L. Zhong, D. Duan, J. Mater. Sci. 51, 1142 (2016)

    Article  CAS  Google Scholar 

  41. S.K. Das, S.V. Thakare, T. Butz, J. Phys. Chem. Solids 70, 778 (2009)

    Article  CAS  Google Scholar 

  42. J.F. Monteiro, A.A.L. Ferreira, I. Antunes, D.P. Fagg, J.R. Frade, J. Solid State Chem. 185, 143 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to B.G. Vats for his support during the work. Authors acknowledge B. Vishwanadh and D. Harish for their support in TEM acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashwani Kumar or Manjulata Sahu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sahu, M., Deb, A.C. et al. Structural investigation in strontium titanate (SrTiO3) synthesized by gel-combustion method and in-gelation method: a TDPAC and XRD study. J Mater Sci: Mater Electron 32, 11577–11587 (2021). https://doi.org/10.1007/s10854-021-05753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05753-5

Navigation