Skip to main content

Defects on Strontium Titanate

  • Chapter
  • First Online:
Defects at Oxide Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

Transition metal oxides sharing the perovskite structure exhibit many scientifically interesting and technologically important phenomena, and defects in these materials play a critical role in determining their properties. In the most general sense, SrTiO3 is a suitable model system for the study of defects in perovskite oxide materials. This chapter reviews common surface and defect structures in SrTiO3, and concludes with a discussion of defect diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano, Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 4, 816–819 (2005)

    Article  ADS  Google Scholar 

  2. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  ADS  Google Scholar 

  3. A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 469, 189–193 (2011)

    Article  ADS  Google Scholar 

  4. J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006)

    Article  ADS  Google Scholar 

  5. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007)

    Article  Google Scholar 

  6. E. Ertekin, V. Srinivasan, J. Ravichandran, P.B. Rossen, W. Siemons, A. Majumdar, R. Ramesh, J.C. Grossman, Interplay between intrinsic defects, doping, and free carrier concentration in SrTiO3 thin films. Phys. Rev. B 85, 195460 (2012)

    Article  ADS  Google Scholar 

  7. D.S. Deak, F. Silly, D.T. Newell, M.R. Castell, Ordering of TiO2-based nanostructures on SrTiO3(001) surfaces. J. Phys. Chem. B 110, 9246–9251 (2006)

    Article  Google Scholar 

  8. O.N. Tufte, P.W. Chapman, Electron mobility in semiconducting strontium titanate. Phys. Rev. B 155, 796–802 (1967)

    Article  ADS  Google Scholar 

  9. M. Choi, F. Oba, Y. Kumagai, I. Tanaka, Anti-ferrodistortive-like oxygen-octahedron rotation induced by the oxygen vacancy in cubic SrTiO3. Adv. Mater. 25, 86–90 (2013)

    Article  Google Scholar 

  10. D.J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R.A. Mackie, W. Egger, Identification of A-and B-site cation vacancy defects in perovskite oxide thin films. Phys. Rev. Lett. 105, 226102 (2010)

    Article  ADS  Google Scholar 

  11. M. Choi, F. Oba, I. Tanaka, Role of Ti antisitelike defects in SrTiO3. Phys. Rev. Lett. 103, 185502 (2009)

    Article  ADS  Google Scholar 

  12. Y.Y. Guo, H.M. Liu, D.P. Yu, J.-M. Liu, Ferroelectricity and superparamagnetism in Sr/Ti nonstoichiometric SrTiO3. Phys Rev B 85, 104108 (2012)

    Article  ADS  Google Scholar 

  13. H.W. Jang, A. Kumar, S. Denev, M.D. Biegalski, P. Maksymovych, C.W. Bark, C.T. Nelson, C.M. Folkman, S.H. Baek, N. Balke, C.M. Brooks, D.A. Tenne, D.G. Schlom, L.Q. Chen, X.Q. Pan, S.V. Kalinin, V. Gopalan, C.B. Eom, Ferroelectricity in strain-free SrTiO3 thin films. Phys. Rev. Lett. 104, 197601 (2010)

    Article  ADS  Google Scholar 

  14. M.J. Akhtar, Z.U.N. Akhtar, R.A. Jackson, C.R.A. Catlow, Computer simulation studies of strontium titanate. J. Am. Ceram. Soc. 78, 421–428 (1995)

    Article  Google Scholar 

  15. H.L. Tuller, S.R. Bishop, Point defects in oxides: tailoring materials through defect engineering. Ann. Rev. Mater. Res. 41, 369–398 (2011)

    Article  ADS  Google Scholar 

  16. D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430, 657–661 (2004)

    Article  ADS  Google Scholar 

  17. D.D. Cuong, B. Lee, K.M. Choi, H.-S. Ahn, S. Han, J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA+U study. Phys. Rev. Lett. 98, 115503 (2007)

    Article  ADS  Google Scholar 

  18. Y. Tokuda, S. Kobayashi, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Ikuhara, T. Yamamoto, Strontium vacancy clustering in Ti-excess SrTiO3 thin film. Appl. Phys. Lett. 99, 033110 (2011)

    Article  ADS  Google Scholar 

  19. Y.S. Kim, J. Kim, S.J. Moon, W.S. Choi, Y.J. Chang, J.-G. Yoon, J. Yu, J.-S. Chung, T.W. Noh, Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. Appl. Phys. Lett. 94, 202906 (2009)

    Article  ADS  Google Scholar 

  20. D.J. Keeble, R.A. Mackie, W. Egger, B. Löwe, P. Pikart, C. Hugenschmidt, T.J. Jackson, Identification of vacancy defects in a thin film perovskite oxide. Phys. Rev. B 81, 064102 (2010)

    Article  ADS  Google Scholar 

  21. M.S.J. Marshall, M.R. Castell, Shape transitions of epitaxial islands during strained layer growth: anatase TiO2(001) on SrTiO3(001). Phys. Rev. Lett. 102, 146102 (2009)

    Article  ADS  Google Scholar 

  22. F. Silly, M.R. Castell, Formation of single-domain anatase TiO2(001)-(1 × 4) islands on SrTiO3(001) after thermal annealing. Appl. Phys. Lett. 85, 3223–3225 (2004)

    Article  ADS  Google Scholar 

  23. K. Szot, W. Speier, Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 60, 5909–5926 (1999)

    Article  ADS  Google Scholar 

  24. Y. Liang, D.A. Bonnell, Atomic structures of reduced SrTiO3(001) surfaces. Surf. Sci. Lett. 285, L510–516 (1993)

    ADS  Google Scholar 

  25. Y. Liang, D.A. Bonnell, Effects of variations in stoichiometry on the surface structure of SrTiO3(001). J. Am. Ceram. Soc. 78, 2633–2640 (1995)

    Article  Google Scholar 

  26. R. Meyer, R. Waser, J. Helmbold, G. Borchardt, Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J. Electroceram. 9, 101–110 (2002)

    Article  Google Scholar 

  27. S.N. Ruddlesden, P. Popper, New compounds of the K2NiF4 type. Acta Cryst. 10, 538–539 (1957)

    Article  Google Scholar 

  28. S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure. Acta Cryst. 11, 54–55 (1958)

    Article  Google Scholar 

  29. K. Szot, M. Pawelczyk, J. Herion, C. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, J. Dec, Nature of the surface layer in ABO3-type perovskites at elevated temperatures. Appl. Phys. A 62, 335–343 (1996)

    ADS  Google Scholar 

  30. K.H. Lee, S.W. Kim, H. Ohta, K. Koumoto, Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO (SrTiO3)n (n = 1, 2). J. Appl. Phys. 100, 063717 (2006)

    Article  ADS  Google Scholar 

  31. N.D. Orloff, W. Tian, C.J. Fennie, C.H. Lee, D. Gu, J. Mateu, X.X. Xi, K.M. Rabe, D.G. Schlom, I. Takeuchi, J.C. Booth, Broadband dielectric spectroscopy of Ruddlesden-Popper Srn+1TinO3n+ 1 (n = 1, 2, 3) thin films. Appl. Phys. Lett. 94, 042908 (2009)

    Article  ADS  Google Scholar 

  32. J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, X.-D. Xiang, Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden-Popper homologous series. Appl. Phys. Lett. 78, 3292–3294 (2001)

    Article  ADS  Google Scholar 

  33. C. Noguera, Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1 (n = 1−3). Phil. Mag. Lett. 80, 173–180 (2000)

    Article  ADS  Google Scholar 

  34. T. Birol, N.A. Benedek, C.J. Fennie, Interface control of emergent ferroic order in Ruddlesden-Popper Srn+1TinO3n+1. Phys. Rev. Lett. 107, 257602 (2011)

    Article  ADS  Google Scholar 

  35. K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer, Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys. Rev. Lett. 88, 075508 (2002)

    Article  ADS  Google Scholar 

  36. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011)

    Article  Google Scholar 

  37. D.W. Reagor, V.Y. Butko, Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching. Nature Mater 4, 593–596 (2005)

    Article  ADS  Google Scholar 

  38. D. Kan, R. Kanda, Y. Kanemitsu, Y. Shimakawa, M. Takano, T. Terashima, A. Ishizumi, Blue luminescence from electron-doped SrTiO3. Appl. Phys. Lett. 88, 191916 (2006)

    Article  ADS  Google Scholar 

  39. H. Yasuda, Y. Kanemitsu, Dynamics of nonlinear blue photoluminescence and auger recombination in SrTiO3. Phys. Rev. B 77, 193202 (2008)

    Article  ADS  Google Scholar 

  40. J.M.E. Harper, J.J. Cuomo, H.R. Kaufman, Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications. J. Vac. Sci. Tech 21, 737–756 (1982)

    Article  ADS  Google Scholar 

  41. M.R. Castell, Scanning tunneling microscopy of reconstructions on the SrTiO3(001) surface. Surf. Sci. 505, 1–13 (2002)

    Article  ADS  Google Scholar 

  42. M.R. Castell, Nanostructures on the SrTiO3(001) surface studied by STM. Surf. Sci. 516, 33–42 (2002)

    Article  ADS  Google Scholar 

  43. K. Johnston, M.R. Castell, A.T. Paxton, M.W. Finnis, SrTiO3(001)(2 × 1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Phys. Rev. B 70, 085415 (2004)

    Article  ADS  Google Scholar 

  44. N. Erdman, K.R. Poeppelmeier, M. Asta, O. Warschkow, D.E. Ellis, L.D. Marks, The structure and chemistry of the TiO2-rich surface of SrTiO3(001). Nature 419, 55–58 (2002)

    Article  ADS  Google Scholar 

  45. N. Erdman, O. Warschkow, M. Asta, K.R. Poeppelmeier, D.E. Ellis, L.D. Marks, Surface structures of SrTiO3(001): a TiO2-rich reconstruction with a c(4 × 2) unit cell. J. Am. Chem. Soc. 125, 10050–10056 (2003)

    Article  Google Scholar 

  46. O. Warschkow, M. Asta, N. Erdman, K.R. Poeppelmeier, D.E. Ellis, L.D. Marks, TiO2-rich reconstructions of SrTiO3(001): a theoretical study of structural patterns. Surf. Sci. 573, 446–456 (2004)

    Article  ADS  Google Scholar 

  47. D. Keeble, R. Mackie, W. Egger, B. Löwe, P. Pikart, C. Hugenschmidt, T. Jackson, Identification of vacancy defects in a thin film perovskite oxide. Phys. Rev. B 81, 064102 (2010)

    Article  ADS  Google Scholar 

  48. D.M. Kienzle, A.E. Becerra-Toledo, L.D. Marks, Vacant-site octahedral tilings on SrTiO3(001), the (√13 × √13) R33.7° surface, and related structures. Phys. Rev. Lett. 106, 176102 (2011)

    Article  ADS  Google Scholar 

  49. F. Li, Z. Wang, S. Meng, Y. Sun, J. Yang, Q. Guo, J. Guo, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3(110) surface. Phys. Rev. Lett. 107, 036103 (2011)

    Article  ADS  Google Scholar 

  50. H. Tanaka, T. Matsumoto, T. Kawai, S. Kawai, Surface structure and electronic property of reduced SrTiO3(100) surface observed by scanning tunneling microscopy/spectroscopy. Jap. J. App. Phys. 32, 1405 (1993)

    Article  ADS  Google Scholar 

  51. T. Kubo, H. Nozoye, Surface structure of SrTiO3(100)-(√5 × √5)-R 26.6°. Phys. Rev. Lett. 86, 1801 (2001)

    Article  ADS  Google Scholar 

  52. G.-Z. Zhu, G. Radtke, G.A. Botton, Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 490, 384–387 (2012)

    Article  ADS  Google Scholar 

  53. A.E. Becerra-Toledo, M.S.J. Marshall, M.R. Castell, L.D. Marks, c(4 × 2) and related structural units on the SrTiO3(001) surface: scanning tunneling microscopy, density functional theory, and atomic structure. J. Chem. Phys. 136, 214701–214709 (2012)

    Article  ADS  Google Scholar 

  54. J.A. Enterkin, A.K. Subramanian, B.C. Russell, M.R. Castell, K.R. Poeppelmeier, L.D. Marks, A homologous series of structures on the surface of SrTiO3(110). Nat. Mater. 9, 245–248 (2010)

    ADS  Google Scholar 

  55. H.L. Marsh, D.S. Deak, F. Silly, A.I. Kirkland, M.R. Castell, Hot STM of nanostructure dynamics on SrTiO3(001). Nanotechnology 17, 3543–3548 (2006)

    Article  ADS  Google Scholar 

  56. J. Tersoff, D.R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983)

    Article  ADS  Google Scholar 

  57. M.S.J. Marshall, A.E. Becerra-Toledo, L.D. Marks, M.R. Castell, Surface and defect structure of oxide nanowires on SrTiO3. Phys. Rev. Lett. 107, 086102 (2011)

    Article  ADS  Google Scholar 

  58. M.S.J. Marshall, A.E. Becerra-Toledo, D.J. Payne, R.G. Egdell, L.D. Marks, M.R. Castell, Structure and composition of linear TiOx nanostructures on SrTiO3(001). Phys. Rev. B 86, 125416 (2012)

    Article  ADS  Google Scholar 

  59. J.A. Enterkin, A.E. Becerra-Toledo, K.R. Poeppelmeier, L.D. Marks, A chemical approach to understanding oxide surfaces. Surf. Sci. 606, 344–355 (2012)

    Article  ADS  Google Scholar 

  60. V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Surface defects and the electronic structure of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978)

    Article  ADS  Google Scholar 

  61. W. Meevasana, P.D.C. King, R.H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger, Z.-X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10, 114–118 (2011)

    Article  ADS  Google Scholar 

  62. J. Shen, H. Lee, R. Valentí, H.O. Jeschke, Ab initio study of the two-dimensional metallic state at the surface of SrTiO3: importance of oxygen vacancies. Phys. Rev. B 86, 195119 (2012)

    Article  ADS  Google Scholar 

  63. K. Takeyasu, K. Fukada, M. Matsumoto, K. Fukutani, Control of the surface electronic structure of SrTiO3(001) by modulation of the density of oxygen vacancies. J. Phys.: Condens. Matter 25, 162202 (2013)

    ADS  Google Scholar 

  64. K. Gömann, G. Borchardt, A. Gunhold, W. Maus-Friedrichs, H. Baumann, Ti diffusion in La-doped SrTiO3 single crystals. Phys. Chem. Chem. Phys. 6, 3639–3644 (2004)

    Article  Google Scholar 

  65. W.H. Rhodes, W.D. Kingery, Dislocation dependence of cationic diffusion in SrTiO3. J. Am. Ceram. Soc. 49, 521–526 (1966)

    Article  Google Scholar 

  66. P. Pasierb, S. Komornicki, M. Rekas, Comparison of the chemical diffusion of undoped and Nb-doped SrTiO3. J. Phys. Chem. Solids 60, 1835–1844 (1999)

    Article  ADS  Google Scholar 

  67. G.V. Lewis, C.R.A. Catlow, Potential models for ionic oxides. J. Phys. C: Solid State Phys. 18, 1149–1161 (1985)

    Article  ADS  Google Scholar 

  68. T.B. Wu, J.N. Lin, Transition of compensating defect mode in niobium-doped barium titanate. J. Am. Ceram. Soc. 77, 759–764 (1994)

    Article  Google Scholar 

  69. A.E. Paladino, Oxidation kinetics of single-crystal SrTiO3. J. Am. Ceram. Soc. 48, 476–478 (1965)

    Article  Google Scholar 

  70. L.C. Walters, R.E. Grace, Formation of point defects in strontium titanate. J. Phys. Chem. Solids 28, 239–244 (1967)

    Article  ADS  Google Scholar 

  71. J.D. Wrigley, M.E. Twigg, G. Ehrlich, Lattice walks by long jumps. J. Chem. Phys. 93, 2885 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  72. Z. Zhang, Q. Ge, S.-C. Li, B.D. Kay, J.M. White, Z. Dohnálek, Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Phys. Rev. Lett. 99, 126105 (2007)

    Article  ADS  Google Scholar 

  73. M.S.J. Marshall, Nanostructured Strontium Titanate Surfaces. DPhil Thesis, University of Oxford, Oxford, UK (2009)

    Google Scholar 

  74. F. Besenbacher, E. Lægsgaard, I. Stensgaard, Fast-scanning STM studies. Mater. Today 8, 26–30 (2005)

    Article  Google Scholar 

  75. T.R. Linderoth, S. Horch, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Surface diffusion of Pt on Pt(110): Arrhenius Behavior of Long Jumps. Phys. Rev. Lett. 78, 4978 (1997)

    Article  ADS  Google Scholar 

  76. M. Lontsi-Fomena, A. Villesuzanne, J.-P. Doumerc, C. Frayret, M. Pouchard, A density functional theory study of oxygen diffusion in LaAlO3 and SrTiO3. Comput. Mater. Sci. 44, 53–60 (2008)

    Article  Google Scholar 

  77. J. Carrasco, F. Illas, N. Lopez, E.A. Kotomin, Y.F. Zhukovskii, R.A. Evarestov, Y.A. Mastrikov, S. Piskunov, J. Maier, First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. Phys. Rev. B 73, 064106 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Castell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marshall, M.S.J., Becerra-Toledo, A.E., Marks, L.D., Castell, M.R. (2015). Defects on Strontium Titanate. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_11

Download citation

Publish with us

Policies and ethics