Skip to main content
Log in

Influence of different complexing agents on structural, morphological, and magnetic properties of Mg–Co ferrites synthesized by sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the preparation process of magnesium-cobalt nano-ferrite powder (Mg0.1Co0.9Fe2O4) by sol–gel self-propagation method, the effect of complexing agent on the nanostructure and magnetic properties of ferrite is studied by changing the type of complexing agent (the complexing agent includes citric acid, oxalic acid, tartaric acid, glucose, and egg white). The XRD pattern of each sample has eight distinct characteristic peaks, and the number of the strongest peak in each map is one [i.e., (311) peak]. All these evidences can preliminarily indicate that the sample has a spinel structure. In addition, in the FTIR of the sample, it can be seen that there are several distinct characteristic peaks at 580 cm−1 (i.e., Fe–O peak, etc.) which can also prove the structural characteristics of the sample. In the SEM map, the sample can be seen to have an elliptical shape with a crystalline grain size between 28 and 50 nm. From this, we can guess that the complexing agent participates in the reaction and has a certain influence on the particle size of the sample. Elemental analysis showed that all the six samples prepared contained magnesium, cobalt, iron, and oxygen, and then we quantitatively analyzed the sample to find that the prepared sample was the target product. The BET test shows that a sample is prepared with glucose as the complexing agent, the specific surface area of it can be increased. The VSM data show that magnesium–cobalt ferrite powder with high saturation magnetization, residual magnetization, and coercivity can be prepared by selecting glucose as the complexing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Bozadgiev, T. Dimova, T. Mitev, Classification of ferrospinel structures and textures. J. Am. Ceram. Soc. 68(1), 1–12 (1985)

    Article  Google Scholar 

  2. B. Geller, A. Coville, Magnetism and magnetic materials. Phys. Today 11(6), 48–48 (1958)

    Google Scholar 

  3. S. Uday Bhasker et al., Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)

    Article  Google Scholar 

  4. N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)

    Article  Google Scholar 

  5. G.W. Coffey, J. Hardy, L.R. Pedersen, Electrochemical properties of lanthanum strontium aluminum ferrites for the oxygen reduction reaction. Solid State Ion. 158, 1–9 (2003)

    Article  CAS  Google Scholar 

  6. S.M. Abbas, A.K. Dixit, R. Chatterjee, Complex permittivity and microwave absorption properties of BaTiO3–polyaniline composite. Mater. Sci. Eng. B 123, 167–171 (2005)

    Article  Google Scholar 

  7. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)

    Article  Google Scholar 

  8. S.U. Bhasker, M.R. Reddy, Effect of chromium substitution on structural, magnetic and electrical properties of magneto ceramic cobalt ferrite nano-particles. J. Sol–Gel Sci. Technol. 73, 396–402 (2015)

    Article  Google Scholar 

  9. M.D. Osborne, M.E. Fleet, G.M. Bancroft, Next-nearest neighbor effects in the Mössbauer spectra of (Cr, Al) spinels. J. Solid State Chem. 53, 174–183 (1984)

    Article  CAS  Google Scholar 

  10. C.F. Zhang, X.C. Zhong, H.Y. Yu et al., Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Physica B 404, 2327–2331 (2009)

    Article  CAS  Google Scholar 

  11. J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE Trans. Magn. 39, 3316–3318 (2003)

    Article  CAS  Google Scholar 

  12. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Sci. Eng. B 175, 14–21 (2010)

    Article  CAS  Google Scholar 

  13. J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li–Ni ferrites prepared using rheological phase reaction. J. Rare Earths 25, 79–83 (2007)

    Article  Google Scholar 

  14. S.K. Shinde, S. Ramesh, C. Bathula et al., Novel approach to synthesize NiCo2S4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co. Sci. Rep. 9, 13717 (2019)

    Article  CAS  Google Scholar 

  15. R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Lia et al., Surface and interface engineering of hierarchical photocatalysts. Sci. Rep. 5, 3126–3134 (2018)

    Google Scholar 

  16. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al doped CdO thin films. J. Alloys Compd 509, 6756–6762 (2011)

    Article  CAS  Google Scholar 

  17. G. Chandrasekaran, S. Selvandan, K. Manivannane, Electrical and FTIR studies on Al substituted Mn–Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15–18 (2004)

    Article  CAS  Google Scholar 

  18. W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn–Ni–Zn ferrite. Physica B 534, 17–21 (2018)

    Article  CAS  Google Scholar 

  19. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2−xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  CAS  Google Scholar 

  20. N.S. Kumar, K.V. Kumar, Synthesis and structural properties of bismuth doped cobalt nanoferrites prepared by sol–gel combustion method. World J. Nano Sci. Eng. 5, 140–151 (2015)

    Article  Google Scholar 

  21. M. Ashokkumar, S. Muthukumaran, Superlattices Microstruct.Zn0.96-xCu0.04FexO (0 x 0.04) alloys – Optical and structural studies. Superlattices Microstruct. 69, 53 (2014)

    Article  CAS  Google Scholar 

  22. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1−xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  CAS  Google Scholar 

  23. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, D.R. Mane, Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol–gel method. J. Alloy Compd 549, 213–220 (2013)

    Article  CAS  Google Scholar 

  24. L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  25. N.K. Dung, N.H. Tuan, The effect of cobalt substitution on structure and magnetic properties of nickel ferrite. J. Sci. Math. Phys. 25, 153–159 (2009)

    Google Scholar 

  26. P. Anil Kumar, R. Mathieu, R. Vijayaraghavan, Subham Majumdar, Olof Karis, P. Nordblad, Biplab Sanyal, Olle Eriksson, D. D. Sarma, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137 (1948)

  27. J.M.D. Coey, Rare earth-iron permanent magnets. Chem Inform 23, 236–241 (2010)

    Google Scholar 

  28. A.E. Berkowitz, J.A. Lahut, I.S. Jacobs et al., Spin pinning at ferrite-organic interfaces. Phys. Rev. Lett. 34, 594 (1975)

    Article  CAS  Google Scholar 

  29. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Sun, A. Influence of different complexing agents on structural, morphological, and magnetic properties of Mg–Co ferrites synthesized by sol–gel auto-combustion method. J Mater Sci: Mater Electron 32, 10549–10563 (2021). https://doi.org/10.1007/s10854-021-05711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05711-1

Navigation