Skip to main content
Log in

Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1−xNixO3 manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study reports the effect of Ni substitution for Mn on structural, magnetic, and magnetocaloric properties of La0.7Sr0.3MnO3 manganite synthesized by sol–gel technique. The structural, morphological, and magnetic properties are investigated using x-ray diffractometer (XRD), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM) systems. XRD results showed that all samples crystallize in rhombohedral structure. Thermomagnetic measurements showed that TC decreases with the addition of Ni from 363 K for x = 0.00 to 324 K for x = 0.06. ΔSM determined by Maxwell’s relations and Landau theory gave compatible results in the transition temperature and region above. ΔS maxM values were determined as 4.52, 4.51, 4.41, and 3.90 J kg−1 K−1 for x = 0.00, 0.02, 0.04, and 0.06 at 5T, respectively. The Arrott plots and the scaling analysis of ΔSM, which collapsed on a single curve, showed that magnetic transitions are of second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Dorin, J. Avsec, A. Plesca, The efficiency of magnetic refrigeration and a comparison with compressor refrigeration systems. J. Energy Technol. 11(2018), 59–69 (2018)

    Google Scholar 

  2. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  CAS  Google Scholar 

  3. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019)

    Article  CAS  Google Scholar 

  4. A. Kitanovski, Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020)

    Article  CAS  Google Scholar 

  5. A.M. Tishin, Y.I. Spichkin, V.I. Zverev, P.W. Egolf, A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body. Int. J. Refrig 68, 177–186 (2016)

    Article  CAS  Google Scholar 

  6. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (IOP Publishing LTD, Philadelphia, 2003)

    Book  Google Scholar 

  7. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2−xMnO3 (x = 0–0.20) manganites oxides. J. Alloys Compd. 509, 7410–7415 (2011)

    Article  CAS  Google Scholar 

  8. K.A. Gschneidner, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  CAS  Google Scholar 

  9. C.R.H. Bahl, D. Velazquez, K.K. Nielsen, K. Engelbrecht, K.B. Andersen, R. Bulatova, N. Pryds, High performance magnetocaloric perovskites for magnetic refrigeration. Appl. Phys. Lett. 100, (2012)

    Article  CAS  Google Scholar 

  10. A.M.J. Mahdy, Overview for published magnetocaloric materials used in magnetic refrigeration applications. Int. J. Comput. Appl. Sci. IJOCAAS 3(1) (2017) ISSN: 2399-4509

  11. J. Lyubina, Magnetocaloric materials for energy efficient cooling. J. Phys. D Appl. Phys. 50, (2017)

    Article  CAS  Google Scholar 

  12. O. Sari, M. Balli, From conventional to magnetic refrigerator technology. Int. J. Refrig 37, 8–15 (2014)

    Article  Google Scholar 

  13. E. Brück, O. Tegus, D.T.C. Than, N.T. Trung, K.H.J. Buschow, A review on Mn based materials for magnetic refrigeration: structure and properties. Int. J. Refrig 31, 763–770 (2008)

    Article  CAS  Google Scholar 

  14. A. Barman, S. Kar-Narayan, D. Mukherjee, Caloric effects in perovskite oxides. Adv. Mater. Interfaces 6, 1900291 (2019)

    Article  CAS  Google Scholar 

  15. N. Chau, H.N. Nhat, N.H. Luong, D.L. Minh, N.D. Tho, N.N. Chau, Structure, magnetic, magnetocaloric and magnetoresistance properties of La1−xPbxMnO3 perovskite. Phys. B 327, 270–278 (2003)

    Article  CAS  Google Scholar 

  16. M.S. Reis, V.S. Amaral, J.P. Araujo, P.B. Tavares, A.M. Gomes, I.S. Oliveira, Magnetic entropy change of Pr1−xCaxMnO3 manganites (0.2⩽x⩽0.95). Phys. Rev. B 71, 144413–144418 (2005)

    Article  CAS  Google Scholar 

  17. W. Zhong, W. Chen, C.T. Au, Y.W. Du, Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3–δ. J. Magn. Magn. Mater. 261, 238–243 (2003)

    Article  CAS  Google Scholar 

  18. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3 (Ln=La, Pr and Nd) nanoparticles. Ceram. Int. 40, 16449–16454 (2014)

    Article  CAS  Google Scholar 

  19. G. Akça, S. Kılıç Çetin, A. Ekicibil, Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43, 15811–15820 (2017)

    Article  CAS  Google Scholar 

  20. A.O. Ayaş, M. Akyol, A. Ekicibil, Structural and magnetic properties with largereversible magnetocaloric effect in (La1−xPrx)0.85Ag0.15MnO3 (0.0 ⩽x ⩽0.5) compounds. Philos. Mag. 96, 922 (2016)

    Article  CAS  Google Scholar 

  21. O. Hassayoun, M. Baazaoui, M.R. Laouyenne, F. Hosni, E.K. Hlil, M. Oumezzine, K. Farah, Magnetocaloric effect and electron paramagnetic resonance studies of the transition from ferromagnetic to paramagnetic in La0.8Na0.2Mn1−xNixO3 (0 ≤ x ≤ 0.06). J. Phys. Chem. Solids 135, (2019)

    Article  CAS  Google Scholar 

  22. M.H. Phan, H.X. Peng, S.C. Yu, N.D. Tho, N. Chau, Large magnetic entropy change in Cu-doped manganites. J. Magn. Magn. Mater. 285, 199–203 (2005)

    Article  CAS  Google Scholar 

  23. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites. Phys. B 404, 285–288 (2009)

    Article  CAS  Google Scholar 

  24. N. Chau, P.Q. Niem, H.N. Nhat, N.H. Luong, N.D. Tho, Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites. Phys. B 327, 214–217 (2003)

    Article  CAS  Google Scholar 

  25. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites. Ceram. Int. 41, 7723–7728 (2015)

    Article  CAS  Google Scholar 

  26. V. Dyakonov, A. Ślawska-Waniewska, N. Nedelko, E. Zubov, V. Mikhaylov, K. Piotrowski, A. Szytuła, S. Baran, W. Bazela, Z. Kravchenko, P. Aleshkevich, A. Pashchenko, K. Dyakonov, V. Varyukhin, H. Szymczak, Magnetic, resonance and transport properties of nanopowder of La0.7Sr0.3MnO3 manganites. J. Magn. Magn. Mater. 322, 3072–3079 (2010)

    Article  CAS  Google Scholar 

  27. P.T. Phong, N.V. Dang, L.V. Bau, N.M. An, I. Lee, Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.95Ti0.05O3. J. Alloys Compd. 698, 451–459 (2017)

    Article  CAS  Google Scholar 

  28. R. Cherif, S. Zouari, M. Ellouze, E.K. Hlil, F. Elhalouani, Structural, magnetic and magnetocaloric properties of La0.7Sr0.3MnO3 manganite oxide prepared by the ball milling method. Eur. Phys. J. Plus 129, 83 (2014)

    Article  CAS  Google Scholar 

  29. R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade, Magnetic and magnetocaloric properties of La0.6Pr0.1Sr0.3Mn1−xFexO3 manganites. J. Solid State Chem. 215, 271–276 (2014)

    Article  CAS  Google Scholar 

  30. G. Akça, S. Kılıç Çetin, A. Ekicibil, Composite xLa0.7Ca0.2Sr0.1MnO3 /(1−x) La0.7Te0.3MnO3 materials: magnetocaloric properties around room temperature. J. Mater. Sci.: Mater. Electron. 31, 6796–6808 (2020)

    Google Scholar 

  31. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite. J. Magn. Magn. Mater. 316, 23–28 (2007)

    Article  CAS  Google Scholar 

  32. S. Kılıç Çetin, G. Akça, A. Ekicibil, Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite. J. Mol. Struct. 1196, 658–661 (2019)

    Article  CAS  Google Scholar 

  33. Y. Zhang, Local structure and magnetocaloric effect for La0.7Sr0.3Mn1−xNixO3. Curr. Appl. Phys. 12, 803–807 (2012)

    Article  Google Scholar 

  34. A.E.-M.A. Mohamed, B. Hernando, A.M. Ahmed, Magnetic, magnetocaloric and thermoelectric properties of nickel doped manganites. J. Alloys Compd. 692, 381–387 (2017)

    Article  CAS  Google Scholar 

  35. R. Mouta, R.X. Silva, C.W.A. Paschoal, Tolerance factor for pyrochlores and related structures. Acta Cryst. B69, 439–445 (2013)

    Google Scholar 

  36. Z. Wang, Q. Xub, K. Chen, Maximum magnetic entropy change modulated toward room temperature in perovskite manganites La0.7−xNdx(Ca, Sr)0.3MnO3. Curr. Appl. Phys. 12, 1153–1157 (2012)

    Article  Google Scholar 

  37. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  38. K. Laajimi, M. Khlifi, E.K. Hlil, K. Taibi, M.H. Gazzah, J. Dhahri, Room temperature magnetocaloric effect and critical behavior in La0.67Ca0.23Sr0.1Mn0.98Ni0.02O3 oxide. J. Mater. Sci.: Mater. Electron. 13, 11868–11877 (2019)

    Google Scholar 

  39. L.P. Gor’kov, V.Z. Kresin, Mixed-valence manganites: fundamentals and main properties. Phys. Rep. 400, 149–208 (2004)

    Article  CAS  Google Scholar 

  40. V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect from indirect measurements: magnetization and heat capacity. J. Appl. Phys. 86, 565–575 (1999)

    Article  CAS  Google Scholar 

  41. N. Dhahri, A. Dhahri, K. Cherif, J. Dhahr, H. Belmabrouk, E. Dhahri, Effect of Co substitution on magnetocaloric effect in La0.67Pb0.33Mn1−xCoxO3 (0.15≤x≤0.3). J. Alloys Compd. 507, 405–409 (2010)

    Article  CAS  Google Scholar 

  42. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627–633 (2015)

    Article  CAS  Google Scholar 

  43. P. Nisha, S. Savitha Pillai, A. Darbandi, M.R. Varma, K.G. Sureshand Horst Hahn, Critical behaviour and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1−xFexO3 (x = 0.05, 0.2) synthesized by nebulized spray pyrolysis. Mater. Chem. Phys. 136, 66–74 (2012)

    Article  CAS  Google Scholar 

  44. P. Zhang, H. Yang, S. Zhang, H. Ge, S. Hua, Magnetic and magnetocaloric properties of perovskite La0.7Sr0.3Mn1−xCoxO3. Phys. B 410, 1–4 (2013)

    Article  CAS  Google Scholar 

  45. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol-gel method. J. Alloys Compd. 615, 553–560 (2014)

    Article  CAS  Google Scholar 

  46. V.K. Pecharsky, K.A. Gschneidner, Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000)

    Article  Google Scholar 

  47. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  Google Scholar 

  48. A.O. Ayaş, Structural and magnetic properties with reversible magnetocaloric effect in PrSr1–xPbxMn2O6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures. Philos. Mag. 98(30), 2782–2796 (2018)

    Article  CAS  Google Scholar 

  49. C.M. Bonilla, J. Herrero-Albillos, F. Bartolome, L.M. Garcia, M. Parra-Borderias, V. Franco, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions. Phys. Rev. B 81, (2010)

    Article  CAS  Google Scholar 

  50. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonc¸a, J.P. Araújo, M.A. Sá, P.B. Tavares, J.M. Vieira, Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites. J. Magn. Magn. Mater. 290, 686–689 (2005)

    Article  CAS  Google Scholar 

  51. A. Krichene, W. Boujelben, Enhancement of the magnetocaloric effect in composites based on La0.4Re0.1Ca0.5MnO3 (Re= Dy, Gd, and Eu) polycrystalline manganites. J. Supercond. Novel Magn. 31, 577–582 (2018)

    Article  CAS  Google Scholar 

  52. J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Magnetic and magnetocaloric properties of perovskite manganite Pr0.55Sr0.45MnO3. Phys. B 406, 2289–2292 (2011)

    Article  CAS  Google Scholar 

  53. R. Guetari, T. Bartoli, C.B. Cizmas, N. Mliki, L. Bessais, Structure, magnetic and magnetocaloric properties of new nanocrystalline (Pr, Dy)Fe9 compounds. J. Alloys Compd. 684, 291–298 (2016)

    Article  CAS  Google Scholar 

  54. A. Fujita, K. Fukamichi, Large magnetocaloric effects and landau coefficients of itinerant electron metamagnetic La(FexSi1−x)13 compounds. IEEE Trans. Magn. 41, 3490–3492 (2005)

    Article  CAS  Google Scholar 

  55. M. Koubaa, Y. Regaieg, W.C. Koubaa, A. Cheikhrouhou, S. Ammar-Merah, F. Herbst, Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site. J. Magn. Magn. Mater. 323, 252–257 (2011)

    Article  CAS  Google Scholar 

  56. R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade, Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J. Mater. Sci. 49, 8244–8251 (2014)

    Article  CAS  Google Scholar 

  57. H. Yang, P. Zhang, Q. Wu, H. Ge, M. Pan, Effect of monovalent metal substitution on the magnetocaloric effect of perovskite manganites Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag). J. Magn. Magn. Mater. 324, 3727–3730 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) under Grant Contract No. 119F069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selda Kılıç Çetin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılıç Çetin, S., Akça, G., Aslan, M.S. et al. Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1−xNixO3 manganites. J Mater Sci: Mater Electron 32, 10458–10472 (2021). https://doi.org/10.1007/s10854-021-05702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05702-2

Navigation