Skip to main content
Log in

Structural, Magnetic, and Magnetocaloric Properties of La0.67Sr0.33−xKxMn0.95Ni0.05O3 Manganites (x = 0.10, 0.125, and 0.15): A-site Doping

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline powder samples of La0.67Sr0.33−xKxMn0.95Ni0.05O3 (x = 0.1, 0.125, 0.15) (LSKMNO) were prepared using the sol–gel method (S-G) in this study. The influence of K+ doping was systematically investigated on the lattice structure, morphology, and magnetic and magnetocaloric effect (MCE) of LSKMNO. Through the X-ray diffraction (XRD) to confirm the rhombohedral structure of LSKMNO. The magnetic results showed that the Curie temperature (TC) and the maximum magnetic entropy change (\(\mathit-{\mathit\Delta\textit{S}}_\textit{M}^\text{max}\)) increase with the K+ doping for LSKMNO. The TC and \(\mathit-{\mathit\Delta\textit{S}}_\textit{M}^\text{max}\) for LSKMNO (x = 0.15) were 319 K and 3.59 J/(kg·K) when the external magnetic field (H) was 5 T, respectively. Arrott curve and normalized magnetic entropy curve (\({\mathit\Delta\mathit S}_\textit{M}\mathit/{\mathit\Delta\mathit S}_\textit{M}^\text{max}\mathit-\theta\)) are plotted to prove that LSKMNO undergoes a second order magnetic phase transition at the TC attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bouzidi, S., Gdaiem, M.A., Rebaoui, S., Dhahri, J., Hlil, E.: Large magnetocaloric effect in La0.75Ca0.25–xNaxMnO3 (0≤x≤0.10) manganites. Appl. Phys. A. 65–76 (2020). https://doi.org/10.1039/C8RA09166H

  2. Chaudhary, V., Chen, X., Ramanujan, R.V.: Iron and manganese based magnetocaloric materials for near room temperature thermal management. Prog. Mater. Sci. 64–98 (2019). https://doi.org/10.1016/j.pmatsci.2018.09.005

  3. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 325–340 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

  4. Salazar-Muñoz, V., Guerrero, A.L., Palomares-Sánchez, S.: Review of magnetocaloric properties in lanthanum manganites. J. Magn. Magn. Mater. 169787 (2022). https://doi.org/10.1016/j.jmmm.2022.169787

  5. Yu, B., Gao, Q., Zhang, B., Meng, X., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 622–636 (2003). https://doi.org/10.1016/S0140-7007(03)00048-3

  6. Lionte, S., Barcza, A., Risser, M., Muller, C., Katter, M.: LaFeSi-based magnetocaloric material analysis: cyclic endurance and thermal performance results. Int. J. Refrig. 43–51 (2021). https://doi.org/10.1016/j.ijrefrig.2020.12.004

  7. Dhahri, M., Zaidi, A., Cherif, K., Dhahri, J., Hlil, E.: Effect of indium substitution on structural, magnetic and magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1-xInxO3 (0≤x≤0.1) manganites. J. Alloys Compd. 578–586 (2017). https://doi.org/10.1016/j.jallcom.2016.08.268

  8. Xie, Z., Zou, Z., Jiang, X., Zhang, W., He, B., Han, X., Mao, Z.: Structural, magnetic, and magnetocaloric properties of La0.7Sr0.2Nd0.1Mn1-xNixO3 (x= 0.05, 0.10, and 0.15): B-site doping. Phys. B Condens. Matter. 413985 (2022). https://doi.org/10.1016/j.physb.2022.413985

  9. Xie, Z., Zou, Z., He, B., Liu, L., Mao, Z.: Research progress of doped manganite materials in magnetic refrigeration. Front Mater. 771941 (2021). https://doi.org/10.3389/fmats.2021.771941

  10. Coşkun, A., Taşarkuyu, E., Irmak, A.E., Aktürk, S., Ekicibil, A.: The structural, magnetic, and magnetocaloric properties of La1-xAgxMnO3(0.05≤x≤0.25). J. Supercond. Nov. Magn. 2075–2084 (2016). https://doi.org/10.1007/s10948-016-3516-0

  11. Datta, S., Ghatak, A., Ghosh, B.: Manganite (La1-xAxMnO3; A= Sr, Ca) nanowires with adaptable stoichiometry grown by hydrothermal method: understanding of growth mechanism using spatially resolved techniques. J. Mater. Sci. 9679–9695 (2016). https://doi.org/10.1007/s10853-016-0201-4

  12. Kılıç Çetin, S., Akça, G., Aslan, M.S., Ekicibil, A.: Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1−xNixO3 manganites. J. Mater. Sci. Mater. Electron. 10458–10472 (2021). https://doi.org/10.1007/s10854-021-05702-2

  13. Linh, D.C., Thanh, T.D., Piao, H.-G., Yu, S.-C.: Critical properties around the ferromagnetic-paramagnetic phase transition in La0.7Ca0.3-xAxMnO3 compounds (A= Sr, Ba and x= 0, 0.15, 0.3). J. Alloys Compd. 484–495 (2017). https://doi.org/10.1016/j.jallcom.2017.07.168

  14. Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A.: Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 593–599 (2016). https://doi.org/10.1016/j.jmmm.2015.10.066

  15. Phong, P., Bau, L., Hoan, L., Manh, D., Phuc, N., Lee, I.-J.: B-site aluminum doping effect on magnetic, magnetocaloric and electro-transport properties of La0.7Sr0.3Mn1−xAlxO3. J. Alloys. Compd. 243–249 (2015). https://doi.org/10.1016/j.jallcom.2015.04.225

  16. Guedri, A., Mnefgui, S., Hcini, S., Hlil, E., Dhahri, A.: B-site substitution impact on structural and magnetocaloric behavior of La0.55Pr0.1Sr0.35Mn1-xTixO3 manganites. J. Solid State Chem. 122046 (2021). https://doi.org/10.1016/j.jssc.2021.122046

  17. Oumezzine, M., Zemni, S., Peña, O.: Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite. J. Alloys. Compd. 292–296 (2010). https://doi.org/10.1016/j.jallcom.2010.08.145

  18. Tian, S.-B., Phan, M.-H., Yu, S.-C., Hur, N. H.: Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Physica. B. Condens. Matter. 221–224 (2003). https://doi.org/10.1016/S0921-4526(02)01733-7

  19. Wang, G., Li, L., Zhao, Z., Yu, X., Zhang, X.: Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3 (Ln= La, Pr and Nd) nanoparticles. Ceram Int. 16449–16454 (2014). https://doi.org/10.1016/j.ceramint.2014.07.154

  20. Morelli, D.T., Mance, A.M., Mantese, J.V., Micheli, A.L.: Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 373–375 (1996). https://doi.org/10.1063/1.360840

  21. Lu, W., Luo, X., Hao, C., Song, W., Sun, Y.: Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. Appl. Phys. 113908 (2008). https://doi.org/10.1063/1.3037236

  22. Reshmi, C., Pillai, S.S., Suresh, K., Varma, M.R.: Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3. Solid State Sci. 130–135 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.02.019

  23. Ghosh, K., Ogale, S., Ramesh, R., Greene, R., Venkatesan, T., Gapchup, K., Bathe, R., Patil, S.: Transition-element doping effects in La0.7Ca0.3MnO3. Phys. Rev. B. 533 (1999). https://doi.org/10.1103/physrevb.59.533

  24. Tozri, A., Alhalafi, S., Alrowaili, Z.A., Horchani, M., Omri, A., Skini, R., Ghorai, S., Benali, A., Costa, B.F., Ildiz, G.O.: Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO3. J. Alloys Compd. 161739 (2022). https://doi.org/10.1016/j.jallcom.2021.161739

  25. Debnath, J., Zeng, R., Kim, J., Dou, S.: Improvement of refrigerant capacity of La0.7Ca0.3MnO3 material with a few percent Co doping. J. Magn. Magn. Mater. 138–143 (2011). https://doi.org/10.1016/j.jmmm.2010.08.049

  26. Dhahri, A., Jemmali, M., Dhahri, E., Valente, M.: Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15MnO3 compound. J. Alloys Compd. 221–227 (2015). https://doi.org/10.1016/j.jallcom.2015.01.314

  27. Kamilov, I., Gamzatov, A., Aliev, A., Batdalov, A., Aliverdiev, A., Abdulvagidov, S. B., Melnikov, O., Gorbenko, O. Y., Kaul, A.: Magnetocaloric effect in La1-xAgyMnO3 (y⩽ x): direct and indirect measurements. J Phys D Appl Phys. 4413 (2007). https://doi.org/10.1088/0022-3727/40/15/004

  28. Aliev, A., Gamzatov, A., Batdalov, A., Mankevich, A., Korsakov, I.: Structure and magnetocaloric properties of La1-xKxMnO3 manganites. Phys B Condens. Matter. 885–889 (2011). https://doi.org/10.1016/j.physb.2010.12.021

  29. Gamzatov, A., Aliev, A., Kaul, A.: Magnetocaloric effect in La1-xKxMnO3 (x= 0.11, 0.13, 0.15) composite structures in magnetic fields up to 80 kOe. J. Alloys Compd. 292–296 (2017). https://doi.org/10.1016/j.jallcom.2017.03.300

  30. Bellouz, R., Oumezzine, M., Hlil, E., Dhahri, E.: Effect of Cr substitution on magnetic and magnetic entropy change of La0.65Eu0.05Sr0.3Mn1-xCrxO3 (0.05≤x≤0.15) rhombohedral nanocrystalline near room temperature. J. Magn. Magn. Mater. 136–142 (2015). https://doi.org/10.1016/j.jmmm.2014.09.053

  31. Sharma, M., Pathak, M., Kapoor, P.N.: The sol-gel method: pathway to ultrapure and homogeneous mixed metal oxide nanoparticles. Asian J. Chem. 1405–1412 (2018). https://doi.org/10.14233/ajchem.2018.20845

  32. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta. Cryst. 751–756 (1976). https://doi.org/10.1107/S0567739476001551

  33. Kouki, N., Guedri, A., Hcini, S., Algreiby, A., Charguia, R., Alharbi, R. K.: Structural, magnetic, magnetocaloric and critical studies of Sm-substituted La0.67-xSmxPb0.13Ca0.2MnO3 perovskite manganites. Solid State Commun. 115104 (2023). https://doi.org/10.1016/j.ssc.2023.115104

  34. Chen, W., Hong, B., Zeng, Y., Wang, X., Peng, X., Li, J., Xu, J.: Structure, magnetism, critical behavior and magnetocaloric effects of La0.66Ca0.33MnO3 porous nanospheres tuned by a solvothermal method with PVP addition. J. Alloys Compd. 167625 (2023). https://doi.org/10.1016/j.jallcom.2022.167625

  35. Terakura, K.: Magnetism, orbital ordering and lattice distortion in perovskite transition-metal oxides. Prog. Mater. Sci. 388–400 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.007

  36. Bouzidi, S., Gdaiem, M.A., Rebaoui, S., Dhahri, J., Hlil, E.K.: Large magnetocaloric effect in La0.75Ca0.25–xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. Appl. Phys. A. 60 (2020). https://doi.org/10.1007/s00339-019-3219-z

  37. Bouzidi, S., Gdaiem, M.A., Dhahri, J., Hlil, E.K.: Large magnetocaloric entropy change at room temperature in soft ferromagnetic manganites. RSC Adv. 65–76 (2018). https://doi.org/10.1039/C8RA09166H

  38. Kochmański, M., Paszkiewicz, T., Wolski, S.: Curie–Weiss magnet—a simple model of phase transition. Eur. J. Phys. 1555 (2013). https://doi.org/10.1088/0143-0807/34/6/1555

  39. Xie, Z., Zou, Z., Mao, Z., Jiang, X., Zhang, W.: Room-temperature structure, magnetic, and magnetocaloric properties of (La0.8-xNdx)Sr0.2MnO3(0≤x≤0.2). J. Mater. Res. Technol. 2778–2796 (2022). https://doi.org/10.1016/j.jmrt.2022.10.074

  40. Buschow, K., de Boer, F., Buschow, K., de Boer, F.: The magnetically ordered state. Physics of Magnetism and Magnetic Materials. 19–42 (2003). https://doi.org/10.1007/b100503

  41. Arayedh, B., Kallel, S., Kallel, N., Peña, O.: Influence of non-magnetic and magnetic ions on the magnetocaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M= Cr, Sn, Ti. J. Magn. Magn. Mater. 68–73 (2014). https://doi.org/10.1016/j.jmmm.2014.02.075

  42. Arrott, A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 1394 (1957). https://doi.org/10.1103/physrev.108.1394

  43. Oumezzine, M., Amaral, J., Mompean, F., Hernández, M.G., Oumezzine, M.: Structural, magnetic, magneto-transport properties and Bean–Rodbell model simulation of disorder effects in Cr3+ substituted La0.67Ba0.33MnO3 nanocrystalline synthesized by modified Pechini method. RSC Adv. 32193–32201 (2016). https://doi.org/10.1039/C6RA03328H

  44. Law, J.Y., Franco, V., Moreno-Ramírez, L.M., Conde, A., Karpenkov, D.Y., Radulov, I., Skokov, K.P., Gutfleisch, O.: A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-05111-w

    Article  Google Scholar 

  45. Das, S., Dey, T.K.: Above room temperature magnetocaloric properties of La0.7Ba0.3-zNazMnO3 compounds. Mater. Chem. Phys. (2008). https://doi.org/10.1016/j.matchemphys.2007.09.020

  46. Tozri, A., Alhalafi, S., Alrowaili, Z.A., Horchani, M., Omri, A., Skini, R., Ghorai, S., Benali, A., Costa, B.F.O., Ildiz, G.O.: Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO3. J. Alloys Compd. 161739 (2022). https://doi.org/10.1016/j.jallcom.2021.161739

  47. Guedri, A., Mnefgui, S., Hcini, S., Hlil, E.K., Dhahri, A.: B-site substitution impact on structural and magnetocaloric behavior of La0.55Pr0.1Sr0.35Mn1-xTixO3 manganites. J. Solid State Chem. 122046 (2021). https://doi.org/10.1016/j.jssc.2021.122046

  48. Franco, V., Conde, A.: Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 465–473 (2010). https://doi.org/10.1016/j.ijrefrig.2009.12.019

  49. Taboada-Moreno, C., Sánchez-De Jesús, F., Pedro-García, F., Cortés-Escobedo, C., Betancourt-Cantera, J., Ramírez-Cardona, M., Bolarín-Miró, A.: Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 165887 (2020). https://doi.org/10.1016/j.jmmm.2019.165887

  50. Goldschmidt, V. M.: Die gesetze der krystallochemie. Naturwissenschaften. 477–485 (1926). https://doi.org/10.1007/bf01507527

  51. Xie, Z., Zhang, W., Zou, Z., Jiang, X.: Structural, magnetic, magnetocaloric, investigations on La0.8−xKxSr0.2Mn0.95Ni0.05O3 (x=0.05, 0.10 and 0.15) at room temperature. J. Magn. Magn. Mater. 170014 (2022). https://doi.org/10.1016/j.jmmm.2022.170014

  52. M'nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La0.6Sr0.2Ba0.2-xxMnO3 (0≤x≤0.15). J. Appl. Phys. 113, 073905 (2013). https://doi.org/10.1063/1.4792730

  53. Xie Z., Jiang X., Zou Z.: Investigations on structure, magnetic and magnetocaloric of La0.8Sr0.2Mn1−xNixO3 (x= 0.05, 0.10, and 0.15) at room temperature. Eur. Phys. J. Plus. 1350 (2022). https://doi.org/10.1140/epjp/s13360-022-03566-x

  54. Kossi, S.E., Ghodhbane, S., Mnefgui, S., Dhahri, J., Hlil, E.K.: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0≤x≤0.2). J. Magn. Magn. Mater. 134–142 (2015). https://doi.org/10.1016/j.jmmm.2015.07.050

  55. Elghoul, A., Krichene, A., Boudjada, N.C., Boujelben, W.: Rare earth effect on structural, magnetic and magnetocaloric properties of La0.75Ln0.05Sr0.2MnO3 manganites. Ceram. Int. 12723–12730 (2018). https://doi.org/10.1016/j.ceramint.2018.04.075

  56. Smari, M., Walha, I., Dhahri, E., Hlil, E.K.: Structural, magnetic and magnetocaloric properties of Ag-doped La0.5Ca0.5−xAgxMnO3 compounds with 0⩽ x⩽ 0.4. J. Alloys Compd. 564–571 (2013). https://doi.org/10.1016/j.jallcom.2013.07.104

  57. Salazar-Muñoz, V.E., Palomares-Sánchez, S.A., Betancourt, I., Pérez-Juache, T.J., Compeán-García, V.D., Guerrero, A.L.: Synthesis and magnetocaloric properties of La0.67Ca0.29Sr0.04MnO3 obtained from modified sol-gel Pechini method. J. Solgel Sci. Technol. 241–249 (2019). https://doi.org/10.1007/s10971-019-04950-3

  58. Bouzaiene, E., Dhahri, A.H., Dhahri, J., Hlil, E.K.: Structural, magnetic, magnetocaloric properties and critical behavior of La0.6Bi0.1Sr0.3−xCaxMn0.9Cu0.1O3 manganites (with x = 0.1 and 0.15). Inorg. Chem. Commun. 108824 (2021). https://doi.org/10.1016/j.inoche.2021.108824

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Feng, M., Zou, Z. et al. Structural, Magnetic, and Magnetocaloric Properties of La0.67Sr0.33−xKxMn0.95Ni0.05O3 Manganites (x = 0.10, 0.125, and 0.15): A-site Doping. J Supercond Nov Magn 36, 1751–1766 (2023). https://doi.org/10.1007/s10948-023-06617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06617-1

Keywords

Navigation