Skip to main content
Log in

Influence of synthetic parameters on the enhanced photocatalytic properties of ZnO nanoparticles for the degradation of organic dyes: a green approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report a green synthetic strategy using aqueous leaves extract of Actinodaphne madraspatna Bedd (AMB) for the synthesis of ZnO NPs. The physical shape, size, thermal stability, surface area, surface composition and chemical state, morphological and optical properties of the synthesized ZnO NPs are well characterized through UV–Visible diffuse reflectance spectroscopy (DRS UV), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis–differential thermal analysis (TGA–DTA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray photon spectroscopy (XPS). FT-IR spectrum of ZnO NPs showed a characteristic peak at 416.62 cm−1. Optical studies of prepared ZnO NPs showed the bandgap values are reduced in the range of 3.05 to 2.96 eV. The XRD and TEM data revealed the synthesized ZnO NPs exist in wurtzite crystal structure with crystallite sizes of 18 nm to 68 nm range. The variation in bandgap, surface area and crystallite structure of ZnO NPs would be achieved by changing the experimental parameters. FESEM showed spherical-shaped structure. XPS result confirmed the atomic states of Zn and O. The green synthesized ZnO NPs were examined for the photocatalytic degradation of methylene blue (MB) and acid violet 17 (AV17) dyes under UV light and the rate constants ‘k’ was calculated. It is found that the green synthesized ZnO NPs with reduced bandgap showed enhanced photocatalytic activity with higher rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428–448 (2016)

    Article  CAS  Google Scholar 

  2. R. Weber, A. Watson, M. Forter, F. Oliaei, Waste Manag. Res. 29(1), 107–121 (2011)

    Article  CAS  Google Scholar 

  3. H. Xu, L. Yuanrong, H. Zhong, T. Yun, H. Zheng, Huanjing Kexue Xuebao 26(3), 353–361 (2006)

  4. E. Pervaiz, H. Liu, M. Yang, Nanotechnology 28(10), 105701 (2017)

    Article  CAS  Google Scholar 

  5. M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, A. Yeganeh-Faal, J. Mater. Sci. Mater. Electron. 28(19), 14678–14684 (2017)

    Article  CAS  Google Scholar 

  6. B. Simovin, D. Poleti, A. Golubovin, A. Matkovin, M. Šnepanovin, B. Babicn, G. Brankovin, Process. Appl. Ceram. 11(1), 27–38 (2017)

    Article  Google Scholar 

  7. M. Shirzad-Siboni, A. Jonidi-Jafari, M. Farzadkia, A. Esrafili, M. Gholami, J. Environ. Manag. 186(1), 1–11 (2017)

    Article  CAS  Google Scholar 

  8. B. Jolanta, K. Edyta, D. Mariusz, Desalin. Water Treat. 57(3), 1552–1563 (2016)

    Article  CAS  Google Scholar 

  9. S. Munir, D.D. Dionysiou, S.B. Khan, S.M. Shah, B. Adhikari, A. Shah, J. Photochem. Photobiol. B 148, 209–222 (2015)

    Article  CAS  Google Scholar 

  10. M.F. Kasim, N. Kamarulzaman, R. Rusdi, A.A. Rahman, J. Phys. Conf. Ser. 1083, 012043 (2018)

    Article  CAS  Google Scholar 

  11. J.J. Lu, S.Y. Tsai, Y.M. Lu, T.C. Lin, K.J. Gan, Solid State Commun. 149, 2177–2180 (2009)

    Article  CAS  Google Scholar 

  12. X. Lu, Y. Liu, X. Si, Y. Shen, W. Yu, W. Wang, X. Luo, T. Zhou, Opt. Mater. 62, 335–340 (2016)

    Article  CAS  Google Scholar 

  13. X. Liu, T.M. Swihart, Nanoscale 5(17), 8029–8036 (2013)

    Article  CAS  Google Scholar 

  14. I. Stambolova, V. Blaskov, D. Stoyanova, I. Avramova, L. Dimitrov, K. Milenova, K. Balashev, S. Simeonova, A. Tzonev, L. Aleksandrov, Bull. Mater. Sci. 40(3), 483–492 (2017)

    Article  CAS  Google Scholar 

  15. T. Park, E. Park, J. Ahn, J. Lee, J. Lee, S.-H. Lee, J.-Y. Kim, W. Yi, Bull. Korean Chem. Soc. 34(6), 1779–1782 (2013)

    Article  CAS  Google Scholar 

  16. B. Shashidhara, B.V. Shrisha, K.G. Naik, Arch. Phys. Res. 4(2), 61–74 (2013)

    Google Scholar 

  17. M.F. Bianchetti, M.K. Marjeta, I. Bracko, S.D. Skapin, N.E. Walsoe de Reca, Sens. Transducers J. 146(11), 36–47 (2012)

    CAS  Google Scholar 

  18. A.K. Ramasami, H. Raja Naika, H. Nagabhushana, T. Ramakrishnappa, G.R. Balakrishna, G. Nagaraju, Mater. Charact. 99, 266–276 (2015)

    Article  CAS  Google Scholar 

  19. L. Fu, Z. Fu, Ceram. Int. 41(2), 2492–2496 (2015)

    Article  CAS  Google Scholar 

  20. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Mater. Sci. Semicond. Process. 39, 621–628 (2015)

    Article  CAS  Google Scholar 

  21. M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Mater. Sci. Semicond. Process. 39, 23–29 (2015)

    Article  CAS  Google Scholar 

  22. S. Jafarirad, M. Mehrabi, B. Divband, M. Kosari-Nasab, Mater. Sci. Eng. C 59, 296–302 (2016)

    Article  CAS  Google Scholar 

  23. B. Archana, K. Manjunath, G. Nagaraju, K.B. Chandra Sekhar, N. Kottam, Int. J. Hydrog. Energy 42(8), 5125–5131 (2017)

    Article  CAS  Google Scholar 

  24. N. Pavithra, K. Lingaraju, G. Raghu, G. Nagaraju, Spectrochim. Acta A 185, 11–19 (2017)

    Article  CAS  Google Scholar 

  25. H. Colak, E. Karaköse, J. Alloys Compd 690, 658–662 (2017)

    Article  CAS  Google Scholar 

  26. O. Nava, P. Luque, C. Gómez-Gutiérrez, A. Vilchis-Nestor, A. Castro-Beltrán, M. Mota-González, A. Olivas, J. Mol. Struct. 1134, 121–125 (2017)

    Article  CAS  Google Scholar 

  27. A.A. Barzinjy, S.M. Mamad, M.M. Esmaeel, S.K. Aydin, F.H.S. Hussain, Micro–Nano Lett. 15(6), 415–420 (2020)

    Article  CAS  Google Scholar 

  28. A.A. Barzinjy, S.M. Hamad, H.J. Ismael, Eur. J. Electr. Eng. 4(3), 74–83 (2019)

    Google Scholar 

  29. D. Saravanan, V. Kasisankar, I.V. Asharani, Int. J. Res. Pharm. Sci. 4(3), 469–473 (2013)

    CAS  Google Scholar 

  30. D. Saravanan, I.V. Asharani, Pak. J. Pharm. Sci. 29(1), 193–200 (2016)

    CAS  Google Scholar 

  31. D. BadmaPriya, I.V. Asharani, J. Clust. Sci. 28(4), 1837–1856 (2017)

    Article  CAS  Google Scholar 

  32. K. Rambabu, G. Bharath, F. Banat, P.L. Show, J. Hazard. Mater. 402, 123560 (2021)

    Article  CAS  Google Scholar 

  33. N.A. Mirgane, V.S. Shivankar, S.B. Kotwal, G.C. Wadhawa, M.C. Sonawale, Mater. Today Proc. 37, 849 (2020)

    Article  CAS  Google Scholar 

  34. S.S. Nayak, N.A. Mirgane, V.S. Shivankar, K.B. Pathade, G.C. Wadhawa, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.728

    Article  Google Scholar 

  35. M. Karkhane, H.E. Lashgarian, S.Z. Mirzaei, A. Ghaffarizadeh, K. Cherghipour, A. Sepahvand, A. Marzban, Biocatal. Agric. Biotechnol. 29, 101791 (2020)

    Article  Google Scholar 

  36. I. Ebrahimi, M.P. Gashti, Soc. Dye. Colour. Color. Technol. 132, 162–176 (2016)

    CAS  Google Scholar 

  37. D. Tsimogiannis, M. Samiotaki, G. Panayotou, V. Oreopoulou, Molecules 12, 593–606 (2017)

    Article  Google Scholar 

  38. P.K. Labhane, V.R. Huse, L.B. Patle, A.L. Chaudhari, G.H. Sonawane, J. Mater. Sci. Chem. Eng. 3(7), 39–51 (2015)

    CAS  Google Scholar 

  39. M. Xiangyang, K. Liu, K. Weizhong, J. Kang, Nanjing Shida Xuebao Ziran Kexue ban 30(4), 66–72 (2007)

    Google Scholar 

  40. P. Yin, W. Yu, C. Qing-Guo, Z. Qing, X. An Wu, CrystEngComm 16(34), 7906–7913 (2014)

    Article  Google Scholar 

  41. M. Jay Chithra, M. Sathya, K. Pushpanathan, Acta Metall. Sin. Engl. Lett. 28(3), 394–404 (2015)

    Article  CAS  Google Scholar 

  42. H. Hiromichi, S. Atsuko, S. Kenji, T. Masafumi, T. Suguru, S.L. Richard, J. Acta Metall. Sin. (Engl. Lett.) 77, 1–6 (2013)

    Google Scholar 

  43. Y.C. Zhang, W. Xiao Hu, H.X. Ya, J. Cryst. Growth 280(1–2), 250–254 (2005)

    Article  CAS  Google Scholar 

  44. B. El Filali, T.V. Torchynska, A.I. Diaz Cano, J. Lumin. 161, 25–30 (2015)

    Article  CAS  Google Scholar 

  45. G. Yu Rudko, I.V. Dubrovin, A.I. Klimovskaya, E.G. Gule, P.M. Lytvyn, Y.M. Lytvyn, S.P. Turanska, Ukr. J. Phys. 57(12), 1239–1243 (2012)

    Article  Google Scholar 

  46. V.V. Ursaki, I.M. Tiginyanu, V.V. Zalamai, E.V. Rusu, G.A. Emelchenko, V.M. Masalov, E.N. Samarov, Phys. Rev. B 70(15), 155204 (2004)

    Article  CAS  Google Scholar 

  47. D. GowraRaghupathy, A.N. Banerjee, V.C. Anitha, B. Deva Prasad Raju, J.S. Woo, B.K. Min, ACS Appl. Mater. Interfaces 8(7), 5025–5039 (2016)

    Article  CAS  Google Scholar 

  48. K. Sambath, M. Saroja, M. Venkatachalam, K. Rajendran, N. Muthukumarasamy, J. Mater. Sci. Mater. Electron. 23(2), 431–436 (2012)

    Article  CAS  Google Scholar 

  49. T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, R. Selvaraj, J. Photochem. Photobiol. B 199, 111621 (2019)

    Article  CAS  Google Scholar 

  50. S. Fakhari, M. Jamzad, H.K. Fard, Green Chem. Lett. Rev. 12(1), 19–24 (2019)

    Article  CAS  Google Scholar 

  51. J. Lu et al., Optik (Stuttg.) 182, 980–985 (2019)

    Article  CAS  Google Scholar 

  52. S. Pai, S.H.T. Varadavenkatesan, R. Vinayagam, R. Selvaraj, Optik (Stuttg.) 185, 248–255 (2019)

    Article  CAS  Google Scholar 

  53. S.M. Morris, P.F. Fulvio, M. Jaroniec, J. Am. Chem. Soc. 130, 15210–15216 (2008)

    Article  CAS  Google Scholar 

  54. A.R. Prasad, J. Garvasis, S.K. Oruvil, A. Joseph, J. Phys. Chem. Solids 127, 265–274 (2019)

    Article  CAS  Google Scholar 

  55. J. Das, S.K. Pradhan, D.R. Sahu, D.K. Mishra, S.N. Sarangi, B.B. Nayak, S. Verma, B.K. Roul, Physica B 405, 2492–2497 (2010)

    Article  CAS  Google Scholar 

  56. J. Lee, J. Chung, S. Lim, Physica E 42, 2143–2146 (2010)

    Article  CAS  Google Scholar 

  57. J.-A. Quek, J.-C. Sin, S.-M. Lam, A.R. Mohamed, H.H. Zeng, J. Mater. Sci. Mater. Electron. 31, 1144–1158 (2020)

    Article  CAS  Google Scholar 

  58. H.-Y. Chai, S.-M. Lam, J.-C. Sin, Mater. Lett. 242, 103–106 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to VIT, Vellore, India, for the SEED Money Grant and infrastructure provided to carry out the research work.

Funding

VIT Seed Money Grant.

Author information

Authors and Affiliations

Authors

Contributions

IVA: Conceptualization, Methodology, Writing-Review and Editing. DBP: Investigation, Writing-Original Draft. DT: Formal analysis, Writing-Review and Editing.

Corresponding author

Correspondence to Indira Viswambaran Asharani.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2021_5654_MOESM1_ESM.docx

Supplementary file1 (DOCX 1353 kb) The UV–Visible spectra of the AMB leaves extract and the elemental composition of ZnO(E3) nanoparticles were determined by EDX investigation and the kinetic plots of ln(At/A0) vs time for MB and AV17 dyes using synthesized ZnO NPs are given in Supporting Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badma Priya, D., Thirumalai, D. & Asharani, I.V. Influence of synthetic parameters on the enhanced photocatalytic properties of ZnO nanoparticles for the degradation of organic dyes: a green approach. J Mater Sci: Mater Electron 32, 9956–9971 (2021). https://doi.org/10.1007/s10854-021-05654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05654-7

Navigation