Skip to main content
Log in

Magnetic and critical behavior studies of perovskite manganites La0.8-xEuxSr0.2MnO3(x = 0 and 0.05)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effects of Eu doping at the A site on the magnetic properties of the perovskite manganite La0.8-xEuxSr0.2MnO3(x = 0 and 0.05)polycrystalline samples were investigated in this paper. The polycrystalline La0.8-xEuxSr0.2MnO3 (x = 0,0.05)samples were synthesized using a traditional solid-phase reaction method. X-ray diffraction (XRD) analysis of the polycrystalline samples did not indicate any impurities, confirming that the samples are single phase. The magnetization vs. temperature curve (M-T), as well as the magnetization vs. magnetic field curves (M-H) of the two samples, show that both synthesized structures are paramagnetic in the high-temperature region, while near the Curie temperature (Tc), the material is ferromagnetic. The Tc of both samples, La0.8-xEuxSr0.2MnO3 with x = 0 and the Eu3+-doped sample with x = 0.05, increased to 283 K and 284 K, respectively. The hysteresis loops of the samples show insignificant coercive force and no remanence. The inverse magnetic susceptibility vs. temperature curves (χ−1-T, χ−1 = H/M) indicate that the Griffiths phase temperature remains unchanged, while the Curie temperature decreases. The trends confirm that \({Eu}^{3+}\) doping changed the ferromagnetic coupling of the system. The average field model provides a good fit for the critical parameter response of both the parent and the doped synthesized material. At an applied field of 7 T, the change in magnetic entropy of the doped sample reaches its highest value at 4.19 J/kg·K, and the refrigeration efficiency is 445 J/kg. Our results show that the newly synthesized polycrystalline samples could be used as magnetic refrigeration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Sun, W. Tong, Y. Zhang, Large magnetic entropy change above 300K in La0.67Sr0.33Mn0.9Cr0.1O3 [J]. J. Magn. Magn. Mater. 232(3), 205 (2001)

    Article  CAS  Google Scholar 

  2. M.H. Phan, S.C. Yu, Review of the Magnetocaloric Effect in Manganite Materials [J]. J. Magn. Magn. Mater. 38(8), 325 (2007)

    Article  Google Scholar 

  3. X. Jin, Y. Lu, Y. Sun, H. Wu, X. Sun, F. Cao, H. Chen, B. Xu, J. Zhao, Magnetic properties and magnetic entropy changes of Eu-doped La09Sr01MnO3 perovskite manganese oxides. J. Low Temp. Phys. 195, 403 (2019)

    Article  CAS  Google Scholar 

  4. M.S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.W. Kim, B.H. Koo, Above room temperature magnetic transition and magnetocaloric effect in La0.66Sr0.34MnO3. J. Korean Phys. Soc. 60(10), 1587 (2012)

    Article  CAS  Google Scholar 

  5. A. Bouderbala, J. Makni-Chakroun, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, S. Nowak, S. Ammar-Merah, Structural, magnetic and magnetocaloric study of La0.7−xEuxSr0.3MnO3 (x=0.1, 0.2 and 0.3) manganites. Ceram. Int. 41(6), 7337 (2015)

    Article  CAS  Google Scholar 

  6. J.C. Debnath, R. Zeng, J.H. Kim, D.P. Chen, S.X. Dou, Anisotropic and excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal with anomalous magnetization. Mater. Sci. Eng. B. 177(1), 48 (2012)

    Article  CAS  Google Scholar 

  7. R.F. Yang, Y. Sun, N.L. Di, Q.A. Li, Z.H. Cheng, Anisotropic and large low-field magnetic entropy change in a La4/3Sr5/3Mn2O7 single crystal. J. Magn. Magn. Mater. 309(1), 149 (2007)

    Article  CAS  Google Scholar 

  8. W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetotransport, and magnetocaloric properties of La0.7Sr0.3−xAgxMnO3 perovskite manganites. J. Alloys Compd. 453(1), 42 (2008)

    Article  CAS  Google Scholar 

  9. N.A. Liedienov, A.V. Pashchenko, V.P. Pashchenko, V.K. Prokopenko, Y.F. Revenko, A.S. Mazur, V.Y. Sycheva, V.I. Kamenev, G.G. Levchenko, Structure defects, phase transitions, magnetic resonance and magneto-transport properties of La0.6–xEuxSr0.3Mn1.1O3–δ ceramics. Low Temp. Phys. 42(12), 1102 (2016)

    Article  CAS  Google Scholar 

  10. Z. Gao, Z. Jia, K. Wang et al., Simultaneous Enhancement of Recoverable Energy Density and Efficiency of Lead-free Relaxor-ferroelectric BNT-based Ceramics[J]. Chem. Eng. J. 402, 125951 (2020)

    Article  CAS  Google Scholar 

  11. Z.M. Wang, Q.Y. Xu, G. Ni, H. Zhang, Magnetic entropy change in perovskite manganites La0.6 Pr0.1Pb0.3MnO3 with double metal–insulator peaks [J]. Phys. B 406(23), 4333 (2011)

    Article  CAS  Google Scholar 

  12. Xu. Sun Xiao-Dong, B.W. Hong-Ye, C. Feng-Ze, Lu. Zhao Jian-Jun, Yi. , Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7. Acta Physica Sinica 66(15), 157501 (2017)

    Article  Google Scholar 

  13. M.A. Hamad, Magnetocaloric Effect of Perovskite Manganites Ce0.67Sr0.33MnO3 [J]. J. Supercond. Novel Magn. 26(9), 2981 (2013)

    Article  CAS  Google Scholar 

  14. S. Vadnala, S. Asthana, Magnetocaloric effect and critical field analysis in Eu substituted La0.7-xEuxSr0.3MnO3 (x=0.0, 0.1, 0.2, 0.3) manganites. J. Magn. Magn. Mater. 446, 68 (2018)

    Article  CAS  Google Scholar 

  15. S. Vadnala, P. Pal, S. Asthana, Influence of A-site cation disorder on structural and magnetocaloric properties of Nd0.7–xLaxSr0.3MnO3 (x=0.0, 0.1, 0.2 & 0.3). J. Rare Earth. 33(10), 1072 (2015)

    Article  CAS  Google Scholar 

  16. G. Akça, S. Çetin, A. Ekicibil, Structural, magnetic and magnetocaloric properties of (La 1–x Sm x) 0.85 K 0.15 MnO 3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43(17), 15811–15820 (2017)

    Article  Google Scholar 

  17. X.J. Chen, S. Soltan, H. Zhang, H.U. Habermeier, Strain effect on electronic transport and ferromagnetic transition temperature in La0.9Sr0.1MnO3 thin films. Phys. Rev. B Condens. Matter Mate. Phys. 65, 1744021 (2002)

    Google Scholar 

  18. Y.K. Tang, Y. Sun, Z.H. Cheng, Cooling field dependence of exchange bias in phase-separated La0.88Sr0.12CoO3. J. Appl. Phys. 100(2), 023914 (2006)

    Article  Google Scholar 

  19. C. Saravanan, R. Thiyagarajan, K. Manikandan, M. Sathiskumar, P.V. Kanjariya, J.A. Bhalodia, S. Arumugam, Effect of Cd doping on magnetocaloric effect and critical behavior analysis on perovskite Nd1−xCdxMnO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) manganite polycrystals. J. Appl. Phys. 122(24), 245109 (2017)

    Article  Google Scholar 

  20. R.S. Freitas, J.F. Mitchell, P. Schiffer, Magnetodielectric Consequences of Phase Separation in the Colossal Magnetoresistance Manganite Pr0.7Ca0.3MnO3. Phys. Rev. B. 72(14), 144429 (2005)

    Article  Google Scholar 

  21. D. Das, P. Chowdhury, R.N. Das, C.M. Srivastava, A.K. Nigam, D. Bahadur, Solution sol–gel processing and investigation of percolation threshold in La2/3Ca1/3MnO3:xSiO2 nanocomposite. J. Magn. Magn. Mater. 238(2), 178 (2002)

    Article  CAS  Google Scholar 

  22. T.D. Thanh, D.C. Linh, T.V. Manh, T.A. Ho, T.-L. Phan, S.C. Yu, Coexistence of short- and long-range ferromagnetic order in La0.7Sr0.3Mn1−xCoxO3 compounds. J. Appl. Phys. 117(17), 17C101 (2015)

    Article  Google Scholar 

  23. R. Tlili, A. Omri, M. Bekri, M. Bejar, E. Dhahri, Effect of Ga substitution on magnetocaloric effect in La0.7(Ba, Sr)0.3Mn1−xGaxO3 (0.0≤ x ≤0.20) polycrystalline at room temperature. J. Magn. Magn. Mater. 39, 143–148 (2016)

    Article  Google Scholar 

  24. M.D. Daivajna, N. Kumar, V.P.S. Awana, B. Gahtori, J. Benedict Christopher, S.O. Manjunath, K.Z. Syu, Y.K. Kuo, A. Rao, Electrical, magnetic and thermal properties of Pr0.6−xBixSr0.4MnO3 manganites. J. Alloys Compd. 588, 406 (2014)

    Article  CAS  Google Scholar 

  25. J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, M.A. López-Quintela, Change from first to second order magnetic phase transition in La2/3(Ca, Sr)1/3MnO3 perovskites. Phys. Rev. B. 60(5), 2998 (1999)

    Article  CAS  Google Scholar 

  26. R.F. Yang, Y. Sun, X. Ma, Y.K. Tang, Q.A. Li, Z.H. Cheng, Colossal electroresistance and low-field colossal magnetoresistance in the single-crystal bilayered manganite La1.2 Sr1.8 Mn2 O7. Phys. Rev. B. 73, 092404 (2006)

    Article  Google Scholar 

  27. E. Tka, K. Cherif, D. Jemai, E. Dhahri, H. Belmabrouk, Effect of Al substitution on magnetocaloric effect in La0.57Nd0.1Sr0.33Mn1−xAlxO3 (0.0 ≤ x ≤ 0.30) polycrystalline near room temperature. J. Alloys Compd. 518, 32 (2012)

    Article  CAS  Google Scholar 

  28. P.J. Lampen, Y. Zhang, T.-L. Phan, P. Zhang, S.-C. Yu, H. Srikanth, M.-H. Phan, Magnetic phase transitions and magnetocaloric effect in La0.7Ca0.3Mn1-xFexO3 0.00 ≤ x ≤ 0.07 manganites. J. Appl. Phys. 112(11), 113901 (2012)

    Article  Google Scholar 

  29. B. Yu, W. Sun, J. Fan, X. Lan, W. Zhang, Y. Zhu, H. Han, L. Zhang, L. Ling, H. Yang, Scaling study of magnetic phase transition and critical behavior in Nd0.55Sr0.45Mn098Ga0.02O3 manganite. Mater. Res. Bull. 99, 393 (2018)

    Article  CAS  Google Scholar 

  30. H. Oesterreicher, F.T. Parker, Magnetic cooling near curie temperatures above 300 K. J. Appl. Phys. 55, 4336 (1984)

    Article  Google Scholar 

  31. R. Cherif, M. Ellouze, F. Elhalouani, S. Obbade, Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J. Mater. Sci. 49, 8244 (2014)

    Article  CAS  Google Scholar 

  32. B. Uthaman, K. Anand, R. Rajan, H. Kyaw, S. Thomas, S. Al-Harthi, K. Suresh, V.M. Raama, Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3. RSC Adv. 5, 86144 (2015)

    Article  CAS  Google Scholar 

  33. S.K. Barik, C. Krishnamoorthi, R. Mahendiran, Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1−xFexO3 (0.05≤x≤0.20). J. Magn. Magn. Mater. 323(7), 1015 (2011)

    Article  CAS  Google Scholar 

  34. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Magnetocaloric properties of La0.67Sr0.33MnO3 tunable by particle size and dimensionality. Chem. Phys. Lett. 691, 355 (2018)

    Article  CAS  Google Scholar 

  35. V. Franco, A. Conde, V. Provenzano, R.D. Shull, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322(2), 218 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032, 61565013); Inner Mongolia Natural Science Foundation of China (Grant Nos. 2015MS0101 2015MS0109); Inner Mongolia Institute of Science and Technology Key Project Fund (Grant Nos. NJZZ17291, NJZY16237, NJZY12202); Board Project (Grant Nos. 2015Z2011); and Baotou Teachers College Youth Scientific Research Fund (Grant Nos. BSYKJ2014-22 BSYKJ2014-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, C., Chen, H. et al. Magnetic and critical behavior studies of perovskite manganites La0.8-xEuxSr0.2MnO3(x = 0 and 0.05). J Mater Sci: Mater Electron 32, 11439–11452 (2021). https://doi.org/10.1007/s10854-021-05557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05557-7

Navigation