Skip to main content

Advertisement

Log in

Enhanced specific capacitance and electrochemical properties of nickel hydroxide-activated carbon (α-Ni(OH)2–AC) nanocomposite for pseudocapacitor electrode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical mesoporous nickel hydroxide (α-Ni(OH)2) nanoparticles have been prepared by an inexpensive, simple, and green co-precipitation technique. The α-Ni(OH)2-activated carbon (AC) composite films have been fabricated onto a stainless steel substrate by the doctor blade method through the incorporation of AC into α-Ni(OH)2 nanoparticles. The electrochemical performance of the composite electrode material is evaluated by varying the concentration of AC in the composite. As compared to pure α-Ni(OH)2, the α-Ni(OH)2–AC composite exhibits a more specific capacitance of 436 Fg−1 and noteworthy long-term capacitance retention of 81% after 1500 cycles. The α-Ni(OH)2–AC composite electrode materials will be the potential candidates for fabrication of next generation electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  2. L. Jiao, X. Pan, Y. Xi, J. Li, J. Cao, Q. Guo, W. Han, A facile synthesis of self-assembling reduced graphene oxide/cobalt carbonate hydroxide papers for high-performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 30, 159 (2019)

    Article  CAS  Google Scholar 

  3. L. Gong, X. Liu, L. Su, Facile solvothermal synthesis Ni(OH)2 nanostructure for electrochemical capacitors. J. Inorg. Organomet. Polym. Mater. 21, 866 (2011)

    Article  CAS  Google Scholar 

  4. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)

    Article  CAS  Google Scholar 

  5. D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99 (1998)

    Article  CAS  Google Scholar 

  6. E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)

    Article  CAS  Google Scholar 

  7. S. Faraji, F.N. Ani, The development supercapacitor from activated carbon by electroless plating—a review. Renew. Sustain. Energy Rev. 42, 823 (2015)

    Article  CAS  Google Scholar 

  8. J.W. Wang, Y. Chen, B.Z. Chen, A synthesis method of MnO2/activated carbon composite for electrochemical supercapacitors. J. Electrochem. Soc. 162, A1654 (2015)

    Article  CAS  Google Scholar 

  9. R. Madhu, V. Veeramani, S.M. Chen, A. Manikandan, A.Y. Lo, Y.L. Chueh, Honeycomb-like porous carbon–cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 7, 15812 (2015)

    Article  CAS  Google Scholar 

  10. Y.F. Su, W.U. Feng, L.Y. Bao, Z.H. Yang, RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Mater. 22, 53 (2007)

    Article  CAS  Google Scholar 

  11. M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys. B 405, 2286 (2010)

    Article  CAS  Google Scholar 

  12. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181, 109646 (2020)

    Article  CAS  Google Scholar 

  13. Q. Huang, X. Wang, J. Li, C. Dai, S. Gamboa, P.J. Sebastian, Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. J. Power Sources 164, 425 (2007)

    Article  CAS  Google Scholar 

  14. K.S. Bhat, H.S. Nagaraja, Morphology-dependent electrochemical performances of nickel hydroxide nanostructures. Bull. Mater. Sci. 42, 265 (2019)

    Article  Google Scholar 

  15. J. Chang, M. Park, D. Ham, S.B. Ogale, R.S. Mane, S.H. Han, Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide. Electrochem. Acta. 53, 5016 (2008)

    Article  CAS  Google Scholar 

  16. J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem. Solid-State Lett. 5, H7 (2002)

    Article  CAS  Google Scholar 

  17. G.R. Fu, Z.A. Hu, L.J. Xie, X.Q. Jin, Y.L. Xie, Y.X. Wang, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 4, 1052 (2009)

    CAS  Google Scholar 

  18. S. Tang, L. Sui, Z. Dai, Z. Zhu, H. Huangfu, High supercapacitive performance of Ni (OH)2/XC-72 composite prepared by microwave-assisted method. Rsc Adv. 5, 43164 (2015)

    Article  CAS  Google Scholar 

  19. G.S. Gund, D.P. Dubal, N.R. Chodankar, J.Y. Cho, P. Gomez-Romero, C. Park, C.D. Lokhande, Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 5, 12454 (2015)

    Article  Google Scholar 

  20. M. El-Kemary, N. Nagy, I. El-Mehasseb, Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Proc. 16, 1747 (2013)

    Article  CAS  Google Scholar 

  21. J.W. Lee, J.M. Ko, J.D. Kim, Hierarchical microspheres based on α-Ni(OH)2 nanosheets intercalated with different anions: synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. J. Phys. Chem. C 115, 19445 (2011)

    Article  CAS  Google Scholar 

  22. L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, L. Li, L. Zhang, Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. J. Solid State Chem. 180, 2095 (2007)

    Article  CAS  Google Scholar 

  23. H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013)

    Article  CAS  Google Scholar 

  24. X. Xie, L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45, 2365 (2007)

    Article  CAS  Google Scholar 

  25. S. Gong, Q. Cao, L. Jin, C. Zhong, X. Zhang, Electrodeposition of three-dimensional Ni(OH)2 nanoflakes on partially crystallized activated carbon for high-performance supercapacitors. J. Solid State Electrochem. 20, 619 (2016)

    Article  CAS  Google Scholar 

  26. L. Fan, L. Tang, H. Gong, Z. Yao, R. Guo, Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application. J. Mater. Chem. 22, 16376 (2012)

    Article  CAS  Google Scholar 

  27. M.S. Wu, Y.A. Huang, C.H. Yang, Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition. J. Electrochem. Soc. 155, A798 (2008)

    Article  CAS  Google Scholar 

  28. J.W. Lang, L.B. Kong, W.J. Wu, M. Liu, Y.C. Luo, L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13, 333 (2009)

    Article  CAS  Google Scholar 

  29. M.R. Waikar, A.S. Rasal, N.S. Shinde, S.D. Dhas, A.V. Moholkar, M.D. Shirsat, S.K. Chakarvarti, R.G. Sonkawade, Electrochemical performance of polyaniline based symmetrical energy storage device. Mat. Sci. Semicon. Proc. 120, 105291 (2020)

    Article  CAS  Google Scholar 

  30. X. Zhang, J. Wang, X. Ji, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Nickel/cobalt bimetallic metal-organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J. Alloys Compd. 825, 154069 (2020)

    Article  CAS  Google Scholar 

  31. Y. He, X. Zhang, S. Wang, J. Meng, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, D. Zhuang, Rubik’s cube-like Ni3S4/CuS2 nanocomposite for high-performance supercapacitors. J. Alloys Compd. 847, 156312 (2020)

    Article  CAS  Google Scholar 

  32. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. J. Mater. Sci. 53, 6807–6818 (2018)

    Article  CAS  Google Scholar 

  33. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 531, 83 (2018)

    Article  CAS  Google Scholar 

  34. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Decoration of sponge-like Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl. Mater. Interfaces 5, 2446 (2013)

    Article  CAS  Google Scholar 

  35. S. Vijayakumar, G. Muralidharan, Electrochemical supercapacitor behaviour of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. J. Electroanal. Chem. 727, 53 (2014)

    Article  CAS  Google Scholar 

  36. S.K. Chang, Z. Zainal, K.B. Tan, N.A. Yusof, W.M.D.W. Yusoff, S.R.S. Prabaharan, Nickel-cobalt oxide/activated carbon composite electrodes for electrochemical capacitors. Curr. Appl. Phys. 12, 1421 (2012)

    Article  Google Scholar 

  37. Y.Z. Su, K. Xiao, N. Li, Z.Q. Liu, S.Z. Qiao, Amorphous Ni(OH)2 @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2, 13845 (2014)

    Article  CAS  Google Scholar 

  38. J. Huang, P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li, G. Wang, Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources 246, 371 (2014)

    Article  CAS  Google Scholar 

  39. Y.Z. Zheng, M.L. Zhang, Preparation and electrochemical properties of nickel oxide by molten-salt synthesis. Mater. Lett. 61, 3967 (2007)

    Article  CAS  Google Scholar 

  40. J.H. Shendkar, V.V. Jadhav, P.V. Shinde, R.S. Mane, C. O’Dwyer, Hybrid composite polyaniline-nickel hydroxide electrode materials for supercapacitor applications. Heliyon 4, 801 (2018)

    Article  Google Scholar 

  41. Y. Zhou, J. Jin, L. Chen, Y. Zhu, B. Xu, Open-ended carbon microtubes/carbon nanotubes for high-performance supercapacitors. Mater. Lett. 241, 80 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge PIFC, Department of Physics, Shivaji University Kolhapur for characterization purposes. The author C.E. Patil acknowledges UGC, New Delhi for financial support through F. No. 41-885/2012 (SR) and author Dr. A. V. Moholkar acknowledges DST-SERB for providing funding under Project No. [SERB/F/1699/2018-19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annasaheb V. Moholkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abitkar, S.B., Dhas, S.D., Jadhav, N.P. et al. Enhanced specific capacitance and electrochemical properties of nickel hydroxide-activated carbon (α-Ni(OH)2–AC) nanocomposite for pseudocapacitor electrode material. J Mater Sci: Mater Electron 32, 8657–8667 (2021). https://doi.org/10.1007/s10854-021-05529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05529-x

Navigation