Skip to main content
Log in

Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel-doped mesoporous tin dioxide Sn1−xNixO2 (where x = 0, 0.01, 0.03, and 0.05) nanoparticles using cetyltrimethylammonium bromide (CTAB) as surfactant were prepared by hydrothermal technique. The morphology, structure, optical, magnetic, and electrochemical properties of the mesoporous tin oxide nanopowders were investigated extensively as a function of nickel doping concentration. XRD patterns confirm that the obtained nanoparticles are SnO2 with tetragonal rutile structure fully compatible with JCPDS card no. 41-1445. The crystallite size was measured by Scherrer formula and was found to be 39–30 nm. FTIR findings showed that the change in the shapes and positions of absorption peaks shows the existence of stretching modes that give an implication of successful doping Ni to tin dioxide nanopowders. To analyze the optical properties, the wavelength range 350–1100 nm was used. The result demonstrates that the existence of specifically permitted optical transitions with energy gap varies in the range of 3.6–2.3 eV with Ni concentration. The electrochemical analysis using cyclic voltammetry showed a pair of redox peaks in Ni-doped tin dioxide electrode. The electrochemical impedance spectroscopy (EIS) denoted a significant decrease in charge transfer resistance (RCT), indicating an improved electrochemical performance of the electrode. Ni doping was found to be interesting due to the co-existence of room-temperature ferromagnetism and an enhanced electrochemical behavior, hence making it a probable material for magnetically controlled electrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Xu, D. Li, J. Guo, Y. Hu, P. Yang, Aluminum and silver doped effects on the electrical structure and optical properties of SnO2. J. Phys. Chem. Solids 148, 109763 (2021)

    Article  CAS  Google Scholar 

  2. X.-L. Zhang, L.-F. Liu, W.-M. Liu, Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3, 2908 (2013)

    Article  Google Scholar 

  3. D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36–43 (2019)

    Article  CAS  Google Scholar 

  4. Y.-H. Chen, H.-S. Tao, D.-X. Yao, W.-M. Liu, Kondo metal and ferrimagnetic insulator on the triangular Kagome lattice. Phys. Rev. Lett. 108, 246402 (2012)

    Article  CAS  Google Scholar 

  5. A.-C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007)

    Article  CAS  Google Scholar 

  6. S. Liu, Q. Sun, J. Wang, H. Hou, Charge imbalance induced oxygen-adsorption enhances the gas-sensing properties of Al-doped SnO2 powders. J. Phys. Chem. Solids 124, 163–168 (2019)

    Article  CAS  Google Scholar 

  7. Z.F. Jiang, R.D. Li, S.-C. Zhang, W.M. Liu, Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys. Rev. 72, 04520 (2005)

    Google Scholar 

  8. G.M. Lekha, S. George, Colloidal magnetic metal oxide nanocrystals and their applications. In Colloidal Metal Oxide Nanoparticles (Elsevier, Amsterdam, 2020), pp 289–335

  9. P. Robkhob, I.-M. Tang, S. Thongmee, Increased bound magnetic polaron formation in the dilute magnetic semiconductor Zn1−xNixO. Mater. Sci. Eng. B 260, 114644 (2020)

    Article  CAS  Google Scholar 

  10. D.P. Rai, A. Laref, A. Shankar, A. Sandeep, A.P. Sakhya, R. Khenata, R.K. Thapa, Spin-induced transition metal (TM) doped SnO2 a dilute magnetic semiconductor (DMS): a first principles study. J. Phys. Chem. Solids 120, 104–108 (2018)

    Article  CAS  Google Scholar 

  11. T. Deitl, H. Onho, F. Matsukura, J. Cibert, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Article  Google Scholar 

  12. R.V. Ingle, S.F. Shaikh, P.K. Bhujbal, H.M. Pathan, V.A. Tabhane, Polyaniline doped with protonic acids: optical and morphological studies. ES Mater. Manuf. 8, 54–59 (2020)

    CAS  Google Scholar 

  13. M. Idrees, L. Liu, S. Batool, H. Luo, J. Liang, B. Xu, S. Wang, J. Kong, Cobalt-doping enhancing electrochemical performance of silicon/carbon nanocomposite as highly efficient anode materials in lithium-ion batteries. Eng. Sci. 6, 64–76 (2019)

    Google Scholar 

  14. T. Ouyang, Q. Liu, M. Chen, C. Tang, J. Li, C. Zhang, C. He, H. Bao, J. Zhong, M. Hu, Doping induced abnormal contraction and significant reduction of lattice thermal conductivity of open framework Si24. ES Energy Environ. 3, 88–95 (2019)

    Google Scholar 

  15. E. Shi, T. Feng, J.-H. Bahk, Y. Pan, W. Zheng, Z. Li, G. Jeffery Snyder, S.T. Pantelides, Y. Wu, Experimental and theoretical study on well-tunable metal oxide doping towards high-performance thermoelectrics. ES Energy Environ. 2, 43–49 (2018)

    Google Scholar 

  16. Z. Liu, X. Yi, J. Wang, I. Ferguson, N. Lu, J. Li, Theoretical analysis and experimental realization of highly effective acceptor ionization in GaN via Mg co-doped with 4d-element (In). ES Mater. Manuf. 4, 25–30 (2019)

    Google Scholar 

  17. C.B.S. Valentin, R.L. de Sousa e Silva, P. Banerjee, A. Franco, Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Mater. Sci. Semicond. Process. 96, 122–126 (2019)

    Article  CAS  Google Scholar 

  18. P. Vairale, V. Sharma, A. Waghmare, P. Shinde, S. Pandharkar, A. Punde, V. Doiphode, Y. Hase, R. Aher, S. Nair, V. Jadkar, N. Patil, S. Rondiya, P. Shelke, M. Prasad, S. Jadkar, Study of structural, optical, morphology and photoelectrochemical properties of melanin sensitized TiO2 Thin films prepared by chemical bath deposition method. ES Mater. Manuf. 10, 5–15 (2020)

    CAS  Google Scholar 

  19. M.A. Kashfipour, N. Mehra, R.S. Dent, J. Zhu, Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng. Sci. 8, 11–18 (2019)

    Google Scholar 

  20. M. Waghmare, P. Sonone, P. Patil, V. Kadam, H. Pathan, A. Ubale, Spray pyrolytic deposition of zirconium oxide thin films: influence of concentration on structural and optical properties. Eng. Sci. 5, 79–87 (2019)

    Google Scholar 

  21. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Effect of copper content on structural, morphological, optical and photoelectrochemical properties of SILAR deposited Cu3SnS4 thin films. ES Mater. Manuf. 10, 22–28 (2020)

    CAS  Google Scholar 

  22. R. Li, W. Li, M. Liu, Q. He, Y. Wang, Q. Zhan, T. Wang, Structural, morphological, optical and electrical properties of Cu-doped PbS nanofilms. ES Mater. Manuf. 4, 38–44 (2019)

    Google Scholar 

  23. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance. J. Phys. Chem. Solids 141, 109407 (2020)

    Article  CAS  Google Scholar 

  24. S. Asaithambi, P. Sakthivel, M. Karuppaiah, G. Udhaya Sankar, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 31, 101530 (2020)

    Article  Google Scholar 

  25. L.C.J. Pereira, M.R. Nunes, O.C. Monteiro, Magnetic properties of Co-doped TiO2 anatase nanopowders. Appl. Phys. Lett. 93, 222502 (2008)

    Article  CAS  Google Scholar 

  26. T.A. Abdel-Baset, Y.-W. Fang, B. Anis, C.-G. Duan, M. Abdel-Hafiez, Structural and magnetic properties of transition-metal-doped Zn1−xFexO. Nanoscale Res. Lett. 11, 115 (2016)

    Article  CAS  Google Scholar 

  27. M. Hassan Farooq, R. Hussain, L. Zhang, Fabrication, characterization and magnetic properties of Mn-doped SnO2 nanostructures via hydrothermal method. Mater. Lett. 131, 350–353 (2014)

    Article  CAS  Google Scholar 

  28. J. Khajonrit, N. Prasoetsopha, T. Sinprachim, P. Kidkhunthod, S. Pinitsoontorn, S. Maensiri, Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3 nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015010 (2017)

    Article  CAS  Google Scholar 

  29. K. Shiva, M.S.R.N. Kiran, U. Ramamurthy, A broad pore size distribution mesoporous SnO2 as anode for lithium-ion batteries. J. Solid State Electrochem. 16, 3643–3649 (2012)

    Article  CAS  Google Scholar 

  30. A.D. Adhikari, R. Oraon, S.K. Tiwari, P. Saren, C.K. Maity, J.H. Lee, N.H. Kim, G.C. Nayak, Zn-doped SnO2 nano-urchin enriched 3D carbonaceous m framework for supercapacitor application. N. J. Chem. 42, 955–963 (2018)

    Article  CAS  Google Scholar 

  31. M. Kuppan, S. Kaleemulla, N. Madhusudhana Rao, N. SaiKrishna, M. Rigana Begam, D. Sreekantha Reddy, Structural, optical and magnetic properties of Ni-doped SnO2 thin films prepared by flash evaporation technique. Int. J. ChemTech Res. 6(3), 1933–1935 (2014)

    CAS  Google Scholar 

  32. J. Fan, M. Guerrero, A. Carretero-Genevrier, M.D. Baro, S. Surinach, E. Pellicer. J. Sort, Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO2 thin films with tunable room temperature magnetic properties. J. Mater. Chem. C 5, 5517 (2017)

    Article  CAS  Google Scholar 

  33. J. Divya, A. Pramothkumar, S. Joshua Gnanamuthu, D.C. Bernice Victoria, P.C. Jobe Prabakar, Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Physica B 588, 412169 (2020)

    Article  CAS  Google Scholar 

  34. M. Aliahmad, M.D. Iranica, Ni-doped SnO2 nanoparticles synthesized by chemical co-precipitation method. J. Energy Environ. 4(1), 49–52 (2013)

    Google Scholar 

  35. A. Azam, A.S. Ahmed, M. Chaman, A.H. Naqvi, Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy. J. Appl. Phys. 108, 094329 (2010)

    Article  CAS  Google Scholar 

  36. W.-T. Li, X.-D. Zhang, X. Guo, Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators B 244, 509–521 (2017)

    Article  CAS  Google Scholar 

  37. A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1(1), 29–33 (2011)

    Google Scholar 

  38. S. Kumar, Exploration of structural, morphological and magnetic properties of transition metal doped SnO2 films grown using pulsed laser deposition. Vacuum 182, 109725 (2020)

    Article  CAS  Google Scholar 

  39. C. Cajas, F.H. Aragón, C.M. Campo, J.A.H. Coaquira, J.E. Rodrıguez-Paez, Synthesis and characterization of Fe-doped SnO2. Rev. Mex. Fıs. S 58(2), 12–15 (2012)

    CAS  Google Scholar 

  40. L. Soussi, T. Garmim, O. Karzazi, A. Rmili, A. El Bachiri, A. Louardi, H. Erguig, Effect of (Co, Fe, Ni) doping on structural, optical and electrical properties of sprayed SnO2 thin film. Surf. Interfaces 19, 100467 (2020)

    Article  CAS  Google Scholar 

  41. A. Ammari, M. Trari, B. Bellal, N. Zebbar, Effect of Sb doping on the transport and electrochemical properties of partially amorphous SnO2 thin films. J. Electroanal. Chem. 823, 638–646 (2018)

    Article  CAS  Google Scholar 

  42. B. Liang, J. Wang, S. Zhang, X. Liang, H. Huang, D. Huang, W. Zhou, J. Guo, Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties. Appl. Surf. Sci. 533, 147447 (2020)

    Article  CAS  Google Scholar 

  43. S. Hao, Y. Shen, H. Wu, J. Meng, L. Xie, T. Wen, N. Gu, J. Liu, Y. Zhang, H. Xu, Modulatory effects of the composition and structure on the osteogenic enhancement for superparamagnetic scaffolds. Eng. Sci. 4, 100–110 (2018)

    Google Scholar 

  44. L. Doan, Y. Lu, M. Karatela, V. Phan, C. Jeffryes, T. Benson, E.K. Wujcik, Surface modifications of superparamagnetic iron oxide nanoparticles with polylactic acid–polyethylene glycol diblock copolymer and graphene oxide for a protein delivery vehicle. Eng. Sci. 7, 10–16 (2019)

    Google Scholar 

  45. Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, Permittivity transition from positive to negative in acrylic polyurethane–aluminum composites. Compos. Sci. Technol. 188, 107969 (2020)

    Article  CAS  Google Scholar 

  46. Z. Wang, K. Sun, H. Wu, P. Xie, Z. Wang, X. Li, R. Fan, Compressible sliver nanowires/polyurethane sponge metacomposites with weakly negative permittivity controlled by elastic deformation. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05126-z

    Article  Google Scholar 

  47. D.K. Das, Electrochemical determination of Zn2+ ion using diphenylamine/single walled carbon nanotube/cetyltrimethylammonium bromide modified glassy carbon electrode. J. Surf. Sci. Technol. 24, 149–162 (2008)

    CAS  Google Scholar 

  48. J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 281(10), 170–188 (2018)

    Article  CAS  Google Scholar 

  49. M. Bakierska, M. Swietosławski, M. Gajewska, A. Kowalczyk, Z. Piwowarska, L. Chmielarz, R. Dziembaj, M. Molenda, Enhancement of electrochemical performance of LiMn2O4 spinel cathode material by synergetic substitution with Ni and S. Materials 9, 366 (2016)

    Article  CAS  Google Scholar 

  50. P. Baraneedharam, C. Siva, K. Nehru, M. Sivakumar, Investigations on structural, optical and electrochemical properties of blue luminescence SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2, 255–261 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Blessi or A. Manikandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blessi, S., Anand, S., Manikandan, A. et al. Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles. J Mater Sci: Mater Electron 32, 7630–7646 (2021). https://doi.org/10.1007/s10854-021-05479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05479-4

Navigation