Skip to main content
Log in

Electrical characterization of pulsed laser deposited high-k HfO2 nanoparticles on tapered Cu2O nanowires: promising cold cathode applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pulsed laser deposition (PLD) experiments were employed to deposit a thin adherent coating of HfO2 nanoparticles on electrochemically synthesized Cu2O nanowires. The as-deposited layer of HfO2 on Cu2O nanowires forms a hierarchical assembly of HfO2–Cu2O. The PLD process parameters were optimized to obtain the desired hierarchical morphology and a plausible growth mechanism has been exemplified based on observed SEM results and pertinent literature survey. In addition, field emission (FE) characteristics of the HfO2–Cu2O hierarchical assembly and pristine Cu2O nanowires were carried out at base pressure of 1 × 10–8 mbar. The HfO2–Cu2O nanowires hierarchical emitter exhibits superior FE behavior in terms of lowering in turn-on and threshold fields, delivery of two-fold higher emission current density at relatively lower applied field, as compared to the pristine Cu2O nanowire emitter. HfO2, despite being a wide band gap semiconductor (WBGS) possessing high dielectric constant, the enhanced FE behaviour is mainly attributed to the morphological aspect of hierarchical structure offering high aspect ratio. Furthermore, similar to other WBGS emitters like diamond, in this case too, low electron affinity is speculated to facilitate field emission. The observed results highlight the potential of PLD in fabricating hierarchical structures of WBGs onto other semiconducting oxide nanostructure for novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A.A. Al-Qudah, M.S. Mousa, A. Fischer, Effect of insulating layer on the field electron emission performance of nano-apex metallic emitters. IOP Conf. Ser. Mater. Sci. Eng 92, 012021 (2015)

    Article  Google Scholar 

  2. M.S. Mousa, Influence of a dielectric coating on field electron emission from micro-point electron sources. Surf. Interface Anal. 39, 102–110 (2007)

    Article  CAS  Google Scholar 

  3. V.V. Zhirnov, G.J. Wojak, W.B. Choi, J.J. Cuomo, J.J. Hren, Wide band gap materials for field emission devices. J. Vac. Sci. Technol. A 15, 1733–1738 (1997)

    Article  CAS  Google Scholar 

  4. A.A. Talin, K.A. Dean, J.E. Jaskie, Field emission displays: a critical review. Solid State Electron. 45, 963–976 (2001)

    Article  CAS  Google Scholar 

  5. R.Z. Wang, B. Wang, H. Wang, H. Zhou, A.P. Huang, M.K. Zhu, H. Yan, X.H. Yan, Band bending mechanism for field emission in wide-band gap semiconductors. Appl. Phys. Lett. 81, 2782–2784 (2002)

    Article  CAS  Google Scholar 

  6. R. Schlesser, M.T. McClure, B.L. McCarson, Z. Sitar, Bias voltage dependent field-emission energy distribution analysis of wide band-gap field emitters. J. Appl. Phys. 82, 5763–5772 (1997)

    Article  CAS  Google Scholar 

  7. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003)

    Article  CAS  Google Scholar 

  8. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014)

    Article  Google Scholar 

  9. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. 88, 1–41 (2015)

    Article  Google Scholar 

  10. V.V. Afanasev, A. Stesmans, F. Chen, X. Shi, S.A. Campbell, Internal photoemission of electrons and holes from (1 0 0) Si into HfO2. Appl. Phys. Lett. 81, 1053 (2002)

    Article  CAS  Google Scholar 

  11. M.N. Jones, Y.W. Kwon, D.P. Norton, Dielectric constant and current transport for HfO2 545 thin films on ITO. Appl. Phys. A 81(2), 285–288 (2005)

    Article  CAS  Google Scholar 

  12. S.R. Suryawanshi, A.K. Singh, M. Deo, D.J. Late, S. Sinha, M.A. More, 3D Hetero-architecture of GdB6 nanoparticles on lessened cubic Cu2O nanowires: enhanced field emission behavior. CrystEngComm 17, 3936–3944 (2015)

    Article  CAS  Google Scholar 

  13. S. Long, X. Lian, C. Cagli, X. Cartoixà, R. Rurali, E. Miranda, D. Jiménez, L. Perniola, M. Liu, J. Suñé, Quantum-size effects in hafnium-oxide resistive switching. Appl. Phys. Lett. 102, 183505 (2013)

    Article  Google Scholar 

  14. V.A. Gritsenko, T.V. Perevalov, D.R. Islamov, Electronic properties of hafnium oxide: a contribution from defects and traps. Phys. Rep. 613, 1–20 (2016)

    Article  CAS  Google Scholar 

  15. W. Qilong, L. Wei, Z. Zhuoya, Z. Xiaobing, D. Yunsong, W. JinChan, Field emission and other electron sources fabrication of dielectric layer in a novel triode structure CNT-FED. In: The 5th International IVESC 2004 Proceedings, pp. 233–235 (2004)

  16. R.T. Shisode, S.R. Suryawanshi, C.D. Mistari, D.J. Late, M.A. More, Enhanced field emission characteristics of a 3D hierarchical HfO2-ZnO heteroarchitecture. Chem. Select 2, 2305–2310 (2017)

    CAS  Google Scholar 

  17. C.-L. Hsu, J.-Y. Tsai, T.-J. Hsueh, Novel field emission structure of CuO/Cu2O composite nanowires based on copper through silicon via technology. RSC Adv. 5, 33762–33766 (2015)

    Article  CAS  Google Scholar 

  18. S.R. Suryawanshi, C.D. Mistari, A.K. Singh, D.M. Phase, D.J. Late, S. Sinha, M.A. More, Facile Approach towards fabrication of GdB6-ZnO heteroarchitecture as high current density cold cathode. Chem. Select 1, 3723–3729 (2016)

    CAS  Google Scholar 

  19. S.S. Warule, N.S. Chaudhari, B.B. Kale, K.R. Patil, P.M. Koinkar, M.A. More, R.-I. Murakami, Organization of cubic CeO2 nanoparticles on the edges of self assembledtapered ZnO nanorods via a template free one-pot synthesis: significant cathodoluminescence and field emission properties. J. Mater. Chem. 22, 8887 (2012)

    Article  CAS  Google Scholar 

  20. D.R. Shinde, P.G. Chavan, S. Sen, D.S. Joag, M.A. More, S.C. Gadkari, S.K. Gupta, Enhanced field-emission from SnO2:WO (2.72) nanowire heterostructures. ACS Appl. Mater. Interfaces 3, 4730–4735 (2011)

    Article  CAS  Google Scholar 

  21. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties. J. Mater. Chem. 22, 17055 (2012)

    Article  CAS  Google Scholar 

  22. S. Tian, H. Li, Y. Zhang, J. Ren, Y. Li, Z. Xu, X. Qiang, S. Zhang, Potential field emitters: HfCnanorods sheathed with a HfO2 nanoshell. CrystEngComm 16, 3186 (2014)

    Article  CAS  Google Scholar 

  23. Z. Pan, H.L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.S. Lee, N.B. Wong, S.T. Lee, S. Xie, Oriented silicon carbide nanowires: synthesis and field emission properties. Adv. Mater. 12, 1186–1190 (2000)

    Article  CAS  Google Scholar 

  24. E. Stratakis, R. Giorgi, M. Barberoglou, T.D. Salernitano, N. Lisi, E. Kymakis, Three-dimensional carbon nanowall field emission arrays. Appl. Phys. Lett. 96, 043110 (2010)

    Article  Google Scholar 

  25. S.R. Suryawanshi, A.K. Singh, D.M. Phase, D.J. Late, S. Sinha, M.A. More, Pulsed laser-deposited nanocrystalline GdB6 thin films on W and Re as field emitters. Appl. Phys. A122, 899 (2016)

    Article  Google Scholar 

  26. Y. Omura, K. Murashima, Proposal of field-emission device surrounded by high-k dielectric and performance prospects. J. Disp. Technol. 2, 300–306 (2006)

    Article  Google Scholar 

  27. B. G. William, D. A Powers, H.R Von, Dielectric field emission methods and apparatus Publication number, US Patent Number US2909662A

  28. S.R. Suryawanshi, M.A. More, S. Sinha. PLD of GdB6 nanostructures on W Re ZnO urchins and Cu2O nanoneedles vapor liquid solid VLS growth of SnS and In2Se3 nanostructures field emission behavior. Ph.D. Thesis (2017). http://hdl.handle.net/10603/227125

Download references

Acknowledgements

Dr. Sachin R. Suryawanshi [F.4-2/2006(BSR)/PH/17-18/0080] and Dr. Krishna K. Jagtap acknowledge the financial support provided by University Grants Commission, Govt. of India through the Dr. D. S. Kothari Postdoctoral Fellowship.

Funding

The funding was supported by University Grants Commission, India [Grant No. F.4-2/2006(BSR)/PH/17-18/0080] and Board of College and University Development, Savitribai Phule Pune University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin R. Suryawanshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2021_5460_MOESM1_ESM.docx

Supplementary file 1 (DOCX 452 KB) The supporting information contains SEM characterization, Profilometry measurement and FE data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryawanshi, S.R., Shisode, R.T., Jagtap, K.K. et al. Electrical characterization of pulsed laser deposited high-k HfO2 nanoparticles on tapered Cu2O nanowires: promising cold cathode applications. J Mater Sci: Mater Electron 32, 8440–8449 (2021). https://doi.org/10.1007/s10854-021-05460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05460-1

Navigation