Skip to main content

Advertisement

Log in

Porously nanostructured MnO/C composites directed from polydopamine as high-performance supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, hierarchically porous MnO/carbon (MnO/C) microsphere materials were fabricated by a facile two-step approach. The MnO precursors and the polymerization of dopamine were synthesized simultaneously by chemical solution method at room temperature. The dopamine plays a key role in the formation of MnO/C, which guides the growth of porous spherical structures and acts as a carbon source. The enhancement of electrochemical properties and electrical conductivity strongly depend on the porous structure of the composite electrodes. Benefiting from the unique structures, the optimized MnO/C electrode delivered a high specific capacitance of 378 F·g−1 at 0.1 A·g−1 and retained over 96.66% of its initial capacitance after 1000 cycles at 1 A·g−1, suggesting that MnO/C hybrid material has promising potential for practical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27, 7861–7866 (2015)

    Article  CAS  Google Scholar 

  2. K. Yuan, D. Lutzenkirchen-Hecht, L.B. Li, L. Shuai, Y.Z. Li, R. Cao, M. Qiu, X.D. Zhuang, M.K.H. Leung, Y.W. Chen, U. Scherf, J. Am. Chem. Soc. Soc. 142, 2404–2412 (2020)

    Article  CAS  Google Scholar 

  3. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 29, 1605336 (2017)

    Article  Google Scholar 

  4. R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai, G. Yuan, Adv. Funct. Mater. 27, 1701635 (2017)

    Article  Google Scholar 

  5. D. Jia, X. Chen, H. Tan, F. Liu, L.J. Yue, Y.W. Zheng, X.Y. Cao, C.W. Li, Y.Y. Sun, H. Liu, J.Q. Liu, ACS Appl. Mater. Interfaces 10, 30388 (2018)

    Article  CAS  Google Scholar 

  6. X.T. Guo, G.X. Zhang, Q. Li, H.G. Xue, H. Pang, Energy Storage Mater. 15, 171–201 (2018)

    Article  Google Scholar 

  7. J. Huang, J.C. Wei, Y.B. Xiao, Y.Z. Xu, Y.J. Xiao, Y. Wang, L.C. Tan, K. Yuan, Y.W. Chen, ACS Nano 12, 3030–3041 (2018)

    Article  CAS  Google Scholar 

  8. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480–483 (2010)

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Huang, Y.J. Xiao, Z.Y. Peng, K. Yuan, L.C. Tan, Y.W. Chen, Carbon 147, 146–153 (2019)

    Article  CAS  Google Scholar 

  10. T. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, H. Xia, Adv. Mater. 30, 1706640 (2018)

    Article  Google Scholar 

  11. W.J. Ma, M. Li, X. Zhou, J.H. Li, Y.M. Dong, M.F. Zhu, ACS Appl. Mater. Interfaces 11, 9283–9290 (2019)

    Article  CAS  Google Scholar 

  12. X.L. Dai, M. Zhang, J.T. Li, D.Y. Yang, RSC Adv. 10, 15860 (2020)

    Article  CAS  Google Scholar 

  13. L.B. Wang, J. Zhan, J.P. Hei, L.W. Su, H. Chen, H. Wu, Y.H. Wang, H.X. Wang, Electrochim. Acta 307, 442–450 (2019)

    Article  CAS  Google Scholar 

  14. Y.B. Xiao, J. Huang, Y.Z. Xu, K. Yuan, Y.W. Chen, ACS Appl. Mater. Interfaces 11, 20029 (2019)

    Article  CAS  Google Scholar 

  15. Y.T. Yan, J.H. Lin, J. Jiang, H.H. Wang, J.L. Qi, Z.X. Zhong, J.F. Cao, Vacuum 165, 179–185 (2019)

    Article  CAS  Google Scholar 

  16. D.L. Li, Y.J. Zhang, L. Li, F. Hu, H.C. Yang, C.H. Wang, Q.B. Wang, Sci. China Chem. 59, 122–127 (2016)

    Article  CAS  Google Scholar 

  17. H.S. Kim, M.S. Kanga, W.C. Yoo, J. Mater. Chem. A 7, 5561–5574 (2019)

    Article  CAS  Google Scholar 

  18. D.Y. Zhao, Q.C. Zhu, D.J. Chen, X. Li, Y. Yu, X.T. Huang, J. Mater. Chem. A 6, 16475 (2018)

    Article  CAS  Google Scholar 

  19. Y.L. Deng, Y.J. Ji, H.M. Wu, F. Chen, Chem. Commun. 55, 1486–1489 (2019)

    Article  CAS  Google Scholar 

  20. S.W. Liu, M.Y. Tong, G.Q. Liu, X. Zhang, Z.M. Wang, G.Z. Wang, W.P. Cai, H.M. Zhang, H.J. Zhao, Inorg. Chem. Front. 4, 491–498 (2017)

    Article  CAS  Google Scholar 

  21. B. Nirosha, R. Selvakumar, J. Jeyanthi, S. Vairam, New. J. Chem. 44, 181–193 (2020)

    Article  Google Scholar 

  22. R. Zhong, M.Y. Xu, N. Fu, R. Liu, Z.L. Yang, Electrochim. Acta 348, 136209 (2020)

    Article  CAS  Google Scholar 

  23. C.M.A. Juliet, C.I. Sathish, P.S.M. Kumar, A. Vinu, A.C. Bose, Electrochim. Acta 342, 136062 (2020)

    Article  Google Scholar 

  24. B.Y. Li, R.M. Xing, S.V. Mohite, S.S. Latthe, Y.M. Zhou, J. Power Sources 436, 226862 (2019)

    Article  CAS  Google Scholar 

  25. M. Wang, J. Yang, S.Y. Liu, M.Z. Li, J.S. Qiu, J. Colloid Interface Sci. 560, 69–76 (2020)

    Article  CAS  Google Scholar 

  26. Q.J. Le, M. Huang, T. Wang, X.Y. Liu, L.D. Sun, X.L. Guo, D.B. Jiang, J.S. Wang, F. Dong, Y.X. Zhang, J. Colloid Interface Sci. 544, 155–163 (2019)

    Article  CAS  Google Scholar 

  27. H.J. Huang, W.Y. Zhang, Y.S. Fu, X. Wang, Electrochim. Acta 152, 480–488 (2015)

    Article  CAS  Google Scholar 

  28. J.A. Argüello, A. Cerpa, R. Moreno, Ceram. Int. 45, 14316–14321 (2019)

    Article  Google Scholar 

  29. M. Li, H.G. Park, Electrochim. Acta 296, 676–682 (2019)

    Article  CAS  Google Scholar 

  30. Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z. Liu, L. Zhou, J. Wang, L.Q. Mai, Small 16, 2000091 (2020)

    Article  CAS  Google Scholar 

  31. O. Rabbani, S. Ghasemi, S.R. Hosseini, J. Alloys Compd. 840, 155665 (2020)

    Article  CAS  Google Scholar 

  32. D. Hou, H.S. Tao, X.Z. Zhu, M.G. Li, Appl. Surf. Sci. 419, 580–585 (2017)

    Article  CAS  Google Scholar 

  33. N. Zhao, L.B. Deng, D.W. Luo, P.X. Zhang, Appl. Surf. Sci. 526, 146696 (2020)

    Article  CAS  Google Scholar 

  34. V. Gupta, A.M. Kannan, S. Kumar, J. Energy Storage 30, 101575 (2020)

    Article  Google Scholar 

  35. K.Y. Zhang, Y.H. Wei, J. Huang, Y.B. Xiao, W.Z. Yang, T. Hu, K. Yuan, Y.W. Chen, Sci. China Mater. (2020). https://doi.org/10.1007/s40843-020-1371-y

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21401073), Science & Technology Nova Program of Jilin Province (20200301051RQ), Natural Science Foundation of Jilin Province of China (20170101211JC), Youth Foundation of Jilin Science and Technology (20190104194), and Science Foundation of Jilin Institute of chemical Technology (2018019).

Author information

Authors and Affiliations

Authors

Contributions

DH designed and engineered the samples; YS and YZ performed the experiments; YP and JW tested the sample; DH and YS wrote the paper; and YW contributed to the theoretical analysis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Dandan Han or Yen Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Shen, Y., Zhao, Y. et al. Porously nanostructured MnO/C composites directed from polydopamine as high-performance supercapacitor electrodes. J Mater Sci: Mater Electron 32, 5781–5789 (2021). https://doi.org/10.1007/s10854-021-05298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05298-7

Navigation