Skip to main content
Log in

An improved dielectric behavior of hydrothermally synthesized Ba0.4La0.6−yEuyTiO3 (y = 0.01–0.04) nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba0.4La0.6−yEuyTiO3 (y = 0.01–0.04) nanorods were synthesized using simple hydrothermal technique. The mixed structure consisting of tetragonal and rhombohedral phases of the prepared nanorods was confirmed by X-ray diffraction patterns. The structural parameters were calculated and confirmed the tetragonal unit cells in the case of y = 0.01–0.04 samples. The surface morphology evidenced the nanorods like structures among all the samples using the FESEM and TEM studies. The y = 0.03 & 0.04 samples revealed the high dielectric constant values of 13,696 and 16,305 at 10 kHz indicating the applications in high storage capacitors. In addition, dielectric modulus and impedance spectroscopy analysis was done for having clear picture about the space charge polarization effect, relaxation dynamics and electrical conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made immediately available based on the request.

References

  1. N. Suresh Kumar, R. Padma Suvarna, K. Chandra Babu Naidu, Negative dielectric behavior in tetragonal La0.8Co0.2–xEuxTiO3 (x = 0.01–0.04) nanorods. Mater. Charact. 166, 110425 (2020)

    Article  CAS  Google Scholar 

  2. B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, K. Chandra Babu Naidu, Phase transformation, nanorods like morphology, wide band gap and dielectric properties of 1-x (Al0.2La0.8TiO3) + x (BaTiO3) (x = 0.2–0.8) nanocomposites. J. Mater. Sci.: Mater. Electron. 31, 9293–9305 (2020)

    Google Scholar 

  3. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K. Chandra Babu Naidu, K.V. Ratnam, H. Manjunatha, B.P. Rao, Structural transformation and high negative dielectric constant behaviour in (1-x) (Al0.2La0.8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites. Physica E 122, 114204 (2020)

  4. S. Dastagiri, M.V. Lakshmaiah, K. Chandra Babu Naidu, Defect dipole polarization mechanism in low-dimensional Europium substituted Al0.8La0.2TiO3 nanostructures. Physica E 120, 114058 (2020)

    Article  CAS  Google Scholar 

  5. B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, K. Chandra Babu Naidu, S. Ramesh, Nanorods like microstructure, photocatalytic activity and ac-electrical properties of (1-x) (Al0.2La0.8TiO3) + (x) (BaTiO3) (x = 0.2, 0.4, 0.6 & 0.8) nanocomposites. Chem. Phys. Lett. 752, 137552 (2020)

    Article  CAS  Google Scholar 

  6. A. Mallikarjuna, S. Ramesh, N. Suresh Kumar, K. Chandra Babu Naidu, K. Venkata Ratnam, H. Manjunatha, Photocatalytic activity, negative ac- electrical conductivity, dielectric modulus and impedance properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) nanocomposite. Cryst. Res. Technol. 55, 1–10 (2020) 202000068

    Article  CAS  Google Scholar 

  7. S. Dastagiri, M.V. Lakshmaiah, K. Chandra Babu Naidu, N. Suresh Kumar, A. Khan, Induced dielectric behavior in high dense AlxLa1–xTiO3 (x = 0.2–0.8) Nanospheres. J. Mater. Sci.: Mater. Electron. 30, 20253–20264 (2019)

    CAS  Google Scholar 

  8. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Sol-gel synthesized and microwave heated Pb0.8–yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: structural, morphological and dielectric properties. Ceram. Int. 44, 18189–18199 (2018)

    Article  CAS  Google Scholar 

  9. M. Prakash, K. Chandra Babu Naidu, D. Kothandan, R. Jeevan Kumar, Barium titanate microspheres by low temperature hydrothermal method: studies on structural, morphological and optical properties. J. Asian. Ceam. Soc. 6, 1–6 (2018)

    Article  Google Scholar 

  10. D. Kothandan, R.J. Kumar, M. Prakash, K. Chandra Babu Naidu, Structural, morphological and optical properties of Ba1 – xCuxTiO3 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 215, 310–315 (2018)

    Article  CAS  Google Scholar 

  11. K. Chandra Babu Naidu, V. Narasimha Reddy, T. Sofi Sarmash, T. Subbarao, Structural, morphological, optical, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Aust. Ceram. Soc. 55, 201–218 (2019)

    Article  CAS  Google Scholar 

  12. M. Prakash, R. Jeevan Kumar, K. Chandra Babu, Naidu, Optical and functional properties of hydrothermally synthesized tetragonal Ba0.4Cu0.6–xLaxTiO3 (x = 0.2–0.6) nanoparticles. Mater. Res. Express 7, 015037 (2020)

    Article  CAS  Google Scholar 

  13. D. Baba Basha, Hydrothermal synthesis of Ba1 – xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods: structure, morphology, optical band gap, and dielectricity behavior. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04199-5

  14. Y. Wang, K. Miao, W. Wang, Y. Qin, Fabrication of lanthanum doped BaTiO3 fine-grained ceramics with a high dielectric constant and temperature-stable dielectric properties using hydro-phase method at atmospheric pressure. J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  CAS  Google Scholar 

  15. B.D. Anuradha Kumari, Ghosh, La doped barium titanate/polyimide nanocomposites: a study of the effect of La doping and investigation on thermal, mechanical and high dielectric properties. J. Appl. Polym. Sci. 135, 46826 (2018)

    Article  CAS  Google Scholar 

  16. R.P. Patil, C. Hiragond, G.H. Jain, P.K. Khanna, V.B. Gaikwad, P.V. More, La doped BaTiO3 nanostructures for room temperature sensing of NO2/NH3: focus on La concentration and sensing mechanism. Vacuum 166, 37–44 (2019)

    Article  CAS  Google Scholar 

  17. F. Trequattrini, F. Cordero, T. Kolodiazhnyi, Anelastic relaxation from hydrogen and other defects in La-doped BaTiO3. Mater. Sci. Eng. A 521–522, 80–83 (2009)

    Article  CAS  Google Scholar 

  18. Z. Zouaria, L. Sassib, N. Seveyratb, L. Abdelmoulaa, H. Lebrunb, Khemakhem, Structural, dielectric, piezoelectric, ferroelectric and electro-caloric properties of Ba1 – xCaxTi0.975(Nb0.5Yb0.5)0.025O3 lead-free ceramics. Ceram. Int. 44, 8018–8025 (2018)

    Article  CAS  Google Scholar 

  19. M. Muhammad Habib, LeeDa Hwan, J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, Tae Kwon Song, Kyu Sang Choi, Enhanced piezoelectric performance of donor La3+-doped BiFeO3–BaTiO3 lead-free piezoceramics. Ceram. Int. 46, 7074–7080 (2020)

    Article  CAS  Google Scholar 

  20. P. Scherrer, Bestimmung der Grosse und der InnerenStruktur von KolloidteilchenMittelsRontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Gottingen. Mathematisch-PhysikalischeKlasse 2, 98–100 (1918)

    Google Scholar 

  21. A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J. Photochem. Photobiol. B 173, 456–465 (2017)

    Article  CAS  Google Scholar 

  22. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method. J. Alloys Compd. 722, 818–827 (2017)

    Article  CAS  Google Scholar 

  23. A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1 – xMgxFe2O4 superparamagnetic nanospheres. J. Magn. Magn. Mater. 443, 267–274 (2017)

    Article  CAS  Google Scholar 

  24. A. Manohar, C. Krishnamoorthi, Magnetic and photocatalytic studies on Zn1 – xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. J. Photochem. Photobiol. B 177, 95–104 (2017)

    Article  CAS  Google Scholar 

  25. A. Manohar, C. Krishnamoorthi, Structural, Raman, magnetic and other properties of co-substituted ZnFe2O4 nanocrystals synthesized by solvothermal reflux method. J. Mater. Sci. 29(1), 737–745 (2017)

    Google Scholar 

  26. N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Electrical and impedance spectroscopy properties of hydrothermally synthesized Ba0.2Sr0.8–yLayFe12O19 (y = 0.2–0.8) nanorods. Ceram. Int. 46, 5894–5906 (2020)

    Article  CAS  Google Scholar 

  27. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  28. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  29. A. Manohar, C. Krishnamoorthi, Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017)

    Article  CAS  Google Scholar 

  30. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. 31(1), 799–806 (2019)

    Google Scholar 

  31. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 125, 7 (2019)

    Article  CAS  Google Scholar 

  32. Subhasis Roy, S.B. Majumder, Optical characteristic of sol-gel synthesized lead lanthanum titanate-cobalt iron oxide multiferroic composite thin film. J. Appl. Phys. 112, 043520 (2012)

    Article  CAS  Google Scholar 

  33. S. Supriya, S. Kumar, M. Kar, Impedance and DC resistivity studies on chromium substituted cobalt ferrite. J. Mater. Sci.: Mater. Electron. 28, 10652–10673 (2017)

    CAS  Google Scholar 

  34. S. Sweety Supriya, Kumar, M. Kar, Correlation between AC and DC transport properties of Mn substituted cobalt ferrite. J. Appl. Phys. 120, 215106 (2016)

    Article  CAS  Google Scholar 

  35. M. Airimioaei, M.N. Palamaru, A.R. Iordan, P. Berthet, C. Decorse, L. Curecheriu, L. Mitoseriu, Structural investigation and functional properties of MgxNi1–xFe2O4 ferrites. J. Am. Ceram. Soc. 97, 519–526 (2014)

    Article  CAS  Google Scholar 

  36. J. Li, X.-K. Lan, F. Wang, J. Fan, W.-Z. Lu, W. Lei, Impedance spectroscopy and dielectric properties of BaAl(2–2x)(Zn0.5Ti0.5)2xO4 ceramics. Ceram. Int. 46, 1830–1835 (2020)

    Article  CAS  Google Scholar 

  37. K. Chandra Babu Naidu, N. Suresh, Kumar, G. Ranjith Kumar, N. Kumar, Temperature and Frequency dependence of complex impedance parameters of microwave sintered NiMg ferrites. J. Aust. Ceram. Soc. 55, 541–548 (2019)

    Article  CAS  Google Scholar 

  38. U. Ravikiran, E. Zacharias, G. Rajashekhar, P. Sarah, Impedance spectroscopy studies on samarium and sodium substituted strontium bismuth titanate (SBTi). Ceram. Int. 45, 15188–15198 (2019)

    Article  CAS  Google Scholar 

  39. T. Md, Rahman, C.V. Ramana, Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116, 164108 (2014)

    Article  CAS  Google Scholar 

  40. H. Jiang, X.H. Wang, G.F. Fan, M. Fu, W. Lei, X.C. Wang et al., Effect of oxidation on flexural strength and thermal properties of AlN ceramics with residual stress and impedance spectroscopy analysis of defects and impurities. Ceram. Int. 45, 13019–13023 (2019)

    Article  CAS  Google Scholar 

  41. N.S. Kumar, R.P. Suvarna, C.B. Naidu, Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8–yLayCo0.2TiO3 (y = 0.2–0.8) nanofibers. Mater. Chem. Phys. 223, 241–248 (2019)

    Article  CAS  Google Scholar 

  42. H. Keiji Shiga, T. Katsui, Goto, Impedance spectroscopy study of K+ substituted single crystalline BaTi2O5. Ceram. Int. 46, 1011–1017 (2020)

    Article  CAS  Google Scholar 

  43. Y. Yang Liu, C. Du, X. Cheng, N. Sun, J. Jiang, X. Wang, Sun, Dielectric and impedance spectroscopy analysis of lead-free (1-x) (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 ceramics. Ceram. Int. 45, 13347–13353 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Baba Basha would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2021-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Baba Basha.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba Basha, D. An improved dielectric behavior of hydrothermally synthesized Ba0.4La0.6−yEuyTiO3 (y = 0.01–0.04) nanorods. J Mater Sci: Mater Electron 32, 5770–5780 (2021). https://doi.org/10.1007/s10854-021-05297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05297-8

Navigation