Skip to main content
Log in

Ultra-sensitive clogging free combustible molecular precursor-based screen-printed ZnO sensors: a detection of ammonia and formaldehyde breath markers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is beneficial to develop the cost-effective, ultra-sensitive ZnO-based sensor for the rapid detection and quantification of the ammonia and formaldehyde breath markers under ambient conditions. Here, one-step solution route was adopted to formulate the aqueous combustible molecular precursor-based clogging free screen-printing ink consisting of zinc nitrate as an oxidizer, glycine as fuel, and eco-friendly binder sodium carboxymethylcellulose. The formulated precursor was deposited on the glass substrates via a screen-printing technique followed by annealing at different temperatures for an hour. Screen printed ZnO sensors processed at 500 °C with high crystallinity, less lattice distortion, low optical bandgap, and high concentration of donor defects showed remarkably high NH3 gas response ~ 336 and a moderate HCHO response ~ 16.4 towards the 5 ppm and 10 ppm of the respective gases. In addition it's LOD values is drawn as 0.6 ppm and 2.9 ppm for NH3 and HCHO gases, respectively, and exhibits superior selectivity towards ammonia. Faster diffusion of oxygen vacancies (Vo) in the smaller crystallites resulted expeditious sensor kinetics in the screen-printed sensor processed at 400 °C. Response and recovery time were recorded to be 50 s and 50 s to the 5 ppm of NH3, respectively. The crystallinity-dominant domain overcomes the adverse effect of larger grains on the gas response of screen-printed ZnO sensor processed at 500 °C. Robust, scalable, and cost-effective screen-printed ZnO conductometric sensors demonstrated here has a potential application in clinical diagnosis, and also in monitoring the NH3 and HCHO gases at low ppm-level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Righettoni et al., Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today. 18(3), 163–171 (2015)

    Article  CAS  Google Scholar 

  2. S. Davies et al., Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52(1), 223–228 (1997)

    Article  CAS  Google Scholar 

  3. V.A. Luyckx et al., The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 96(6), 414 (2018)

    Article  Google Scholar 

  4. C. Turner et al., A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry SIFT-MS. Physiol. Meas. 27(4), 321 (2006)

    Article  Google Scholar 

  5. H. Li et al., Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10(33), 27858–27867 (2018)

    Article  CAS  Google Scholar 

  6. P. Fuchs et al., Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer. 126(11), 2663–2670 (2010)

    CAS  Google Scholar 

  7. C. Gu et al., Synthesis of the porous NiO/SnO2 microspheres and microcubes and their enhanced formaldehyde gas sensing performance. Sens. Actuators B 241, 298–307 (2017)

    Article  CAS  Google Scholar 

  8. S. Wang et al., Constructing chinky zinc oxide hierarchical hexahedrons for highly sensitive formaldehyde gas detection. J. Alloys Compd. 775, 402–410 (2019)

    Article  CAS  Google Scholar 

  9. K. Zhou et al., On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sens. Actuators B 119(2), 392–397 (2006)

    Article  CAS  Google Scholar 

  10. From conventional films to nanostructured materials, I. ZCastro-Hurtado et al., Conductometric formaldehyde gas sensors. A review. Thin Solid Films 548, 665–676 (2013)

    Article  CAS  Google Scholar 

  11. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Reports. Mater. Sci. 61(1–16), 1–39 (2008)

    Google Scholar 

  12. A. Katoch et al., Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B 185, 411–416 (2013)

    Article  CAS  Google Scholar 

  13. Y. Chen et al., Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17(18), 4537 (2006)

    Article  CAS  Google Scholar 

  14. C. Xu et al., Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 3(2), 147–155 (1991)

    Article  CAS  Google Scholar 

  15. P. Sahay, R. Nath, Al-doped ZnO thin films as methanol sensors. Sens. Actuators B 134(2), 654–659 (2008)

    Article  CAS  Google Scholar 

  16. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuator A 267, 242–261 (2017)

    Article  CAS  Google Scholar 

  17. G. Eranna et al., Oxide materials for development of integrated gas sensors—a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29(3–4), 111–118 (2004)

    Article  CAS  Google Scholar 

  18. J. Cui et al., UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B 227, 220–226 (2016)

    Article  CAS  Google Scholar 

  19. G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)

    Article  CAS  Google Scholar 

  20. A. Moustaghfir et al., Structural and optical studies of ZnO thin films deposited by rf magnetron sputtering: influence of annealing. Surf. Coat. Technol. 174, 193–196 (2003)

    Article  CAS  Google Scholar 

  21. G. Manjunath et al., A scalable screen-printed high performance ZnO-UV and gas sensor: effect of solution combustion. Mater. Sci. Semicond. Process. 107, 104828 (2020)

    Article  CAS  Google Scholar 

  22. S.-W. Choi et al., Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26(14), 1662–1665 (2011)

    Article  CAS  Google Scholar 

  23. T. Senthil, S. Anandhan, Structure–property relationship of sol–gel electrospun ZnO nanofibers developed for ammonia gas sensing. J. Colloid Interface Sci. 432, 285–296 (2014)

    Article  CAS  Google Scholar 

  24. J.-J. Zhang et al., Effect of annealing treatment on morphologies and gas sensing properties of ZnO nanorods. Trans. Nonferrous Met. Soc. 24(3), 736–742 (2014)

    Article  CAS  Google Scholar 

  25. H. Waqas et al., Unique morphologies of zinc oxide synthesized by thermal decomposition and co-precipitation routes: Ultraviolet absorption and luminescence characteristics. Cryst Res Tech. 50(5), 379–388 (2015)

    Article  CAS  Google Scholar 

  26. G. Manjunath et al., A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci. Mater. Electron. 31, 10366–10380 (2020)

    Article  CAS  Google Scholar 

  27. R. Xing et al., Superparamagnetic magnetite nanocrystal clusters as potential magnetic carriers for the delivery of platinum anticancer drugs. J. Mater. Chem. 21(30), 11142–11149 (2011)

    Article  CAS  Google Scholar 

  28. V. Pushpamalar et al., Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 64(2), 312–318 (2006)

    Article  CAS  Google Scholar 

  29. R.A. Kumar et al., Crystal growth, optical and thermal studies of nonlinear optical γ-glycine single crystal grown from lithium nitrate. Optik. 123(5), 409–413 (2012)

    Article  CAS  Google Scholar 

  30. G.S. Machado et al., Immobilization of anionic metalloporphyrins on zinc hydroxide nitrate and study of an unusual catalytic activity. J. Catal. 274(2), 130–141 (2010)

    Article  CAS  Google Scholar 

  31. M. Ahmad et al., Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13(4), 697–704 (2013)

    Article  Google Scholar 

  32. D. Nath et al., X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  33. G. Manjunath et al., Effect of O2, N2 and H2 on annealing of pad printed high conductive Ag–Cu nano-alloy electrodes. Mater. Res. Express. 5(1), 014014 (2018)

    Article  CAS  Google Scholar 

  34. Z. Fang et al., Influence of post-annealing treatment on the structure properties of ZnO films. Appl. Surf. Sci. 241(3–4), 303–308 (2005)

    Article  CAS  Google Scholar 

  35. B.P. Choudhury et al., Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles. J. Exp. Nanosci. 10(2), 103–114 (2015)

    Article  CAS  Google Scholar 

  36. G. Korotcenkov et al., Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B Chem 142(1), 321–330 (2009)

    Article  CAS  Google Scholar 

  37. S. Studenikin et al., Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. J. Appl. Phys. 83(4), 2104–2111 (1998)

    Article  CAS  Google Scholar 

  38. M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3(4), 363–369 (2014)

    Article  CAS  Google Scholar 

  39. S. Bayan, D. Mohanta, Fragmentation of elongated-shaped ZnO nanostructures into spherical particles by swift ion impact. Physica E Low Dimens. Syst. Nanostruct. 54, 288–294 (2013)

    Article  CAS  Google Scholar 

  40. S. Bayan, P. Chakraborty, Secondary ion mass spectrometry and photoluminescence study on microstructural characteristics of chemically synthesized ZnO nanowalls. Appl. Surf. Sci. 303, 233–240 (2014)

    Article  CAS  Google Scholar 

  41. L. Yu et al., Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nanowalls at room temperature. J. Alloys Compd. 682, 352–356 (2016)

    Article  CAS  Google Scholar 

  42. L. Shi et al., High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. Phys. Chem. Chem. Phys. 17(46), 31316–31323 (2015)

    Article  CAS  Google Scholar 

  43. S. David et al., A highly sensitive, selective and room temperature operatable formaldehyde gas sensor using chemiresistive g-C3N4/ZnO. Mater. Adv. 1(8), 2781–2788 (2020)

    Article  CAS  Google Scholar 

  44. N. Izu et al., The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sens. Actuators B 94(2), 222–227 (2003)

    Article  CAS  Google Scholar 

  45. A.J. Kulandaisamy et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016)

    Article  CAS  Google Scholar 

  46. D. Ponnusamy, S. Madanagurusamy, Nanostructured ZnO films for room temperature ammonia sensing. J. Electron. Mater. 43(9), 3211–3216 (2014)

    Article  CAS  Google Scholar 

  47. U. Patil et al., Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015)

    Article  CAS  Google Scholar 

  48. D. Zhang, C. Jiang, Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J. Alloys Compd. 698, 476–483 (2017)

    Article  CAS  Google Scholar 

  49. J. Zhang et al., Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C. 113(5), 1662–1665 (2009)

    Article  CAS  Google Scholar 

  50. D. Zhang et al., Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sens. Actuators B 274, 575–586 (2018)

    Article  CAS  Google Scholar 

  51. P.-G. Su, L.-Y. Yang, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens. Actuators B 223, 202–208 (2016)

    Article  CAS  Google Scholar 

  52. T. Wang et al., Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites. Sens. Actuators B 252, 284–294 (2017)

    Article  CAS  Google Scholar 

  53. S. Li et al., The room temperature gas sensor based on Polyaniline@ flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuastors B 259, 505–513 (2018)

    Article  CAS  Google Scholar 

  54. G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B 183, 459–466 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, India (ECR/2015/000339) is gratefully acknowledged. One of the author P. Nagaraju would like to thank DST-SERB for financial support to carry out the present work (ECR/2016/000534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Ethics declarations

Conflict of interest

The Author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G., Nagaraju, P. & Mandal, S. Ultra-sensitive clogging free combustible molecular precursor-based screen-printed ZnO sensors: a detection of ammonia and formaldehyde breath markers. J Mater Sci: Mater Electron 32, 5713–5728 (2021). https://doi.org/10.1007/s10854-021-05292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05292-z

Navigation