Skip to main content
Log in

Hydrothermal synthesis, characterization, and the influence of Bi+3 doping over nanocomposite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we report ZnO and Bismuth-doped ZnO (rBi/Zn) (r = 3, 6, 9 wt%) nanoparticles through the hydrothermal synthesis method. Different characterization techniques such as XRD, TGA, FTIR, XPS, FESEM, EDX analysis, UV spectroscopy, and PL spectroscopy have been used to investigate the influence of Bi+3 doping over the synthesized rBi/Zn nanoparticles. XRD result reveals a reduction of average particle size from 30 to 21 nm with the increment of Bi+3 (3 → 9 wt%) concentration. The mass variation in rBi/Zn was found more than the pure ZnO sample which reveals in TGA results. The material rBi/Zn exhibits a single-stage to multi-stage decomposition with the enhancement of Bi+3 (3 → 9 wt%) concentration while the XPS result indicates that the reduction of binding energy with increasing Bi+3 doping. UV analysis shows that as the concentration of Bi+3 increases the band gap of the material rBi/Zn reduces from 3.217 to 2.901 eV. However, the conductivity analysis shows the enhancement in the conductivity of rBi/Zn (0 → 6 wt%) but decreases from 6 → 9 wt%. Furthermore, the morphology of rBi/Zn also changes as the doping of Bi+3 increases which is possibly due to the enhancement of lattice mismatch, and pH variation. Such a kind of rBi/Zn nanocomposite material could be used in optoelectronic devices or fiber optics-based gas-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Zhang, M.K. Ram, E.K. Stefanakos, D. Yogi Goswam, J. Nanomater. 2012, 22 (2012)

    Google Scholar 

  2. K. Edalati, A. Shakiba, J. Vahdati-Khaki, S.M. Zebarjad, Mater. Res. Bull. 74, 374–379 (2016)

    Article  CAS  Google Scholar 

  3. Da. Deng, S.T. Martin, S. Ramanathan, Nanoscale 2, 2685–2691 (2010)

    Article  CAS  Google Scholar 

  4. H.-M. Kim, J.-H. Park, S.-K. Lee, Sci. Rep. 9, 15605 (2019)

    Article  Google Scholar 

  5. X. Gao, X. Li, Yu. Weidong, J. Phys. Chem. B 109, 1155–1161 (2005)

    Article  CAS  Google Scholar 

  6. C.J. Lan, H.Y. Cheng, R.J. Chung, J.H. Li, K.F. Kao, T.S. Chinz, J. Electrochem. Soc. 154, D117–D121 (2007)

    Article  CAS  Google Scholar 

  7. L. Zhua, Y. Li, W. Zeng, Ceram. Int. 43, 14873–14879 (2017)

    Article  Google Scholar 

  8. S. Narasimman, L. Balakrishnan, Z.C. Alex, RSC Adv. 8, 18243–18251 (2018)

    Article  CAS  Google Scholar 

  9. B.K. Singh, S. Tripathi, J. Mater. Sci. 27, 2360–2366 (2016)

    CAS  Google Scholar 

  10. T. Fangsuwannarak, P. Krongarrom, J. Kaewphoka and S. T. Rattanachan, (10th international conference IEEE Computer, Telecommunications and Information Technology Krabi) 1–5 (2013).

  11. S. Balachandran, M. Swaminathan, J. Phys. Chem. C 116, 26306–26312 (2012)

    Article  CAS  Google Scholar 

  12. A. Boumezoued, K. Guergouri, R. Barille, D. Rechem, M. Zaabat, M. Rasheed, J. Alloys Compd. 791, 550–558 (2019)

    Article  CAS  Google Scholar 

  13. D. Deng, Wu. Zhifu, G. Zhao, J. Zhao, Adv. Mater. Res. 740, 535–539 (2013)

    Article  Google Scholar 

  14. J. Bo Zhong, J. Zhang Li, Y. Lu, X. Yang He, J. Zeng, W. Hu, Y. Cheng Shen, Appl. Surf. Sci. 258, 4929–4933 (2012)

    Article  Google Scholar 

  15. P.M. Aneesh, K.A. Vanaja, M.K. Jayaraj, Proc. SPIE 6639, 66390J (2007)

    Article  Google Scholar 

  16. B. Yuliarto, L. Nulhakim, M.F. Ramadhani, M. Iqbal, A. Nuruddin, IEEE Sens. J. 15, 4114–4120 (2015)

    Article  Google Scholar 

  17. M. Li, F. Li, P.G. Yin, Chem. Phys. Lett. 601, 92–97 (2014)

    Article  CAS  Google Scholar 

  18. S.S. Zahirullah, P. Immanuel, S. Pravinraj, P.F.H. Inbaraj, J.J. Prince, Mater. Lett. 230, 1–4 (2018)

    Article  Google Scholar 

  19. M.J. Jabeen Fatima, A. Navaneeth, S. Sindhu, RSC Adv. 5, 2504–2510 (2015)

    Article  Google Scholar 

  20. T.V.L. Thejaswini, D. Prabhakaran, M. Akhila Maheswari, J. Photochem. Photobiol. A 335, 217–229 (2017)

    Article  CAS  Google Scholar 

  21. A.A. Ibrahim, G.N. Dar, S. Abbas Zaidi, A. Umar, M. Abaker, H. Bouzid, S. Baskoutas, Talanta 93, 257–263 (2012)

    Article  CAS  Google Scholar 

  22. A. Hezam, K. Namratha, D. Ponnamma, Q.A. Drmosh, A.M. Nagi Saeed, C. Cheng, K. Byrappa, ACS Omega 3, 12260–12269 (2018)

    Article  CAS  Google Scholar 

  23. H. Xie, F. Ding, Mu. Haichuan, Nanotechnology 30, 085708 (2019)

    Article  CAS  Google Scholar 

  24. N.M. Shinde, Q. Xun Xia, J. Moon Yun, R.S. Mane, K. Ho Kim, ACS Appl. Mater. Interfaces 10, 11037–11047 (2018)

    Article  CAS  Google Scholar 

  25. N. Sadananda Kumar, K.V. Bangera, C. Anandan, G.K. Shivakumar, J. Alloys Compd. 578, 613–619 (2013)

    Article  CAS  Google Scholar 

  26. E.T. Seid, F.B. Dejene, J. Mater. Sci. 30, 11833 (2019)

    CAS  Google Scholar 

  27. T. Chitradevi, A. Jestin Lenus, N. Victor Jaya, Mater. Res. Express 7, 015011 (2019)

    Article  Google Scholar 

  28. D. Ghosh, S. Balaji, K. Biswas, K. Annapurna, Mater. Sci. 50, 5450–5457 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to the Director CSIR-CGCRI, the colleagues of the Fiber Optics & Photonics Division, and Material Characterization and Instrumentation Division for providing an experimental facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shailendra Kr Singh or Mukul Chandra Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Dhar, A. & Paul, M.C. Hydrothermal synthesis, characterization, and the influence of Bi+3 doping over nanocomposite thin films. J Mater Sci: Mater Electron 32, 5504–5519 (2021). https://doi.org/10.1007/s10854-021-05272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05272-3

Navigation