Skip to main content
Log in

Optimization of substrate-selective atomic layer deposition of zirconia on electroplated copper using ethanol as both precursor reactant and surface pre-deposition treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recent developments on the further optimization of the selective atomic layer deposition (ALD) of zirconium oxide (ZrO2) onto silicon over electroplated copper are reported with tris(dimethylamino)cyclopentadienyl zirconium as the zirconium precursor and ethanol as both oxygen source for precursor and pretreatment of copper surface to reduce surface oxides. A comparison between the electroplated (EP) and e-beam deposited (EB) copper before ALD using high-resolution X-ray photoelectron spectroscopy (XPS) showed EP Cu having more oxides on the surface and unexpectedly the EP Cu was found to have higher selectivity of ALD. In addition, a comparison of deposition of zirconia on silicon over EP and EB copper substrates for 70 ALD cycles show experimental conditions can impact the degree of selective deposition with the electroplated copper. With further optimization of the substrate pretreatment and ALD process parameters, both XPS survey analysis and ellipsometry showed ALD selectivity was enhanced up to 100 cycles on electroplated copper samples which is higher than ever previously reported forming an amorphous ZrO2 film of ~ 3 nm thickness on silicon and no deposition on copper. Lack of crystallinity of the ALD ZrO2 films is manifested by X-ray absorption fine structure and grazing incidence X-ray diffraction. Atomic force microscopy and scanning electron microscopy performed on the samples indicated no significant changes of the roughness and topography on the samples before and after ZrO2 ALD. Both thermodynamic calculations and experimental data presented here show that ALD selectivity is mainly dictated by the balance of the total amounts of oxygen and carbon in the reactor along with the ALD conditions and reactor design. These studies show pre-deposition ethanol exposure of the substrate, deposition/adsorption of reduction byproducts formed, and the total oxygen and carbon in the ALD reactor are important contributors to whether ALD selectivity can be significantly enhanced or even achieved at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data were recorded carefully and precisely, and experiments were repeated.

References

  1. R. Clark, K. Tapily, K.-H. Yu, T. Hakamata, S. Consiglio, D. O’Meara, C. Wajda, J. Smith, G. Leusink, APL Mater. 6, 058203 (2018)

    Article  CAS  Google Scholar 

  2. A.J.M. Mackus, A.A. Bol, W.M.M. Kessels, Nanoscale 6, 10941 (2014)

    Article  CAS  Google Scholar 

  3. A.J.M. Mackus, M.J.M. Merkx, W.M.M. Kessels, Chem. Mater. 31, 2 (2019)

    Article  CAS  Google Scholar 

  4. K. Cao, J. Cai, X. Liu, R. Chen, J. Vac. Sci. Technol. A 36, 010801 (2018)

    Article  CAS  Google Scholar 

  5. S. Seo, B.C. Yeo, S.S. Han, C.M. Yoon, J.Y. Yang, J. Yoon, C. Yoo, H. Kim, Y. Lee, S.J. Lee, J.-M. Myoung, H.-B.-R. Lee, W.-H. Kim, I.-K. Oh, H. Kim, ACS Appl. Mater. Interfaces 9, 41607 (2017)

    Article  CAS  Google Scholar 

  6. M. Kastelic, I. Oh, C.G. Takoudis, J.A. Friedrich, G.W. Neudeck, Chem. Eng. Sci. 43, 2031 (1988)

    Article  CAS  Google Scholar 

  7. J.A. Friedrich, M. Kastelic, G.W. Neudeck, C.G. Takoudis, J. Appl. Phys. 65, 1713 (1989)

    Article  Google Scholar 

  8. C.G. Takoudis, M.M. Kastelic, Chem. Eng. Sci. 44, 2049 (1989)

    Article  CAS  Google Scholar 

  9. Q. Tao, G. Jursich, C. Takoudis, Appl. Phys. Lett. 96, 192105 (2010)

    Article  CAS  Google Scholar 

  10. S. Kannan Selvaraj, J. Parulekar, C.G. Takoudis, J. Vac. Sci. Technol. A 32, 010601 (2014)

    Article  CAS  Google Scholar 

  11. Q. Tao, K. Overhage, G. Jursich, C. Takoudis, Thin Solid Films 520, 6752 (2012)

    Article  CAS  Google Scholar 

  12. M. Junige, M. Löffler, M. Geidel, M. Albert, J.W. Bartha, E. Zschech, B. Rellinghaus, W.F. van Dorp, Nanotechnology 28, 395301 (2017)

    Article  CAS  Google Scholar 

  13. B. Kalanyan, P.C. Lemaire, S.E. Atanasov, M.J. Ritz, G.N. Parsons, Chem. Mater. 28, 117 (2016)

    Article  CAS  Google Scholar 

  14. J.A. Singh, N.F.W. Thissen, W.-H. Kim, H. Johnson, W.M.M. Kessels, A.A. Bol, S.F. Bent, A.J.M. Mackus, Chem. Mater. 30, 663 (2018)

    Article  CAS  Google Scholar 

  15. M. Pešić, S. Knebel, M. Geyer, S. Schmelzer, U. Böttger, N. Kolomiiets, V.V. Afanas’ev, K. Cho, C. Jung, J. Chang, H. Lim, T. Mikolajick, U. Schroeder, J. Appl. Phys. 119, 064101 (2016)

    Article  CAS  Google Scholar 

  16. R. Oxland, X. Li, S.W. Chang, S.W. Wang, T. Vasen, P. Ramvall, R. Contreras-Guerrero, J. Rojas-Ramirez, M. Holland, G. Doornbos, Y.S. Chang, D.S. Macintyre, S. Thoms, R. Droopad, Y.-C. Yeo, C.H. Diaz, I.G. Thayne, M. Passlack, IEEE Electron Dev. Lett. 37, 261 (2016)

    Article  CAS  Google Scholar 

  17. N. El, B. Hadri, A. Caddemi, Int. J. Comput. Appl. 138, 10 (2016)

    Google Scholar 

  18. D. Kennouche, Y.K. Chen-Wiegart, K.J. Yakal-Kremski, J. Wang, J.W. Gibbs, P.W. Voorhees, S.A. Barnett, Acta Mater. 103, 204 (2016)

    Article  CAS  Google Scholar 

  19. V. Encinas-Sánchez, A. Macías-García, M.A. Díaz-Díez, P. Brito, D. Cardoso, Ceram. Int. 41, 5138 (2015)

    Article  CAS  Google Scholar 

  20. T. Witoon, J. Chalorngtham, P. Dumrongbunditkul, M. Chareonpanich, J. Limtrakul, Chem. Eng. J. 293, 327 (2016)

    Article  CAS  Google Scholar 

  21. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 933 (2016)

    Google Scholar 

  22. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654 (2014)

    Article  CAS  Google Scholar 

  23. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 13, 108 (2016)

    Article  CAS  Google Scholar 

  24. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3313 (2014)

    Article  CAS  Google Scholar 

  25. R. Xu, Ph.D. Dissertation, University of Illinois at Chicago, Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells (2013).

  26. J. Niinistö, K. Kukli, M. Kariniemi, M. Ritala, M. Leskelä, N. Blasco, A. Pinchart, C. Lachaud, N. Laaroussi, Z. Wang, C. Dussarrat, J. Mater. Chem. 18, 5243 (2008)

    Article  CAS  Google Scholar 

  27. X. Wang, S.K. Ghosh, M. Afshar-Mohajer, H. Zhou, Y. Liu, X. Han, J. Cai, M. Zou, X. Meng, J. Mater. Res. 35, 804 (2020)

    Article  CAS  Google Scholar 

  28. Y. Song, J.-H. Seo, Y.-S. Lee, Y.-H. Ryu, K. Hong, S.-K. Rha, J. Korean Phys. Soc. 54, 1141 (2009)

    Article  CAS  Google Scholar 

  29. X. Wang, J.C. Hanson, A.I. Frenkel, J.-Y. Kim, J.A. Rodriguez, J. Phys. Chem. B 108, 13667 (2004)

    Article  CAS  Google Scholar 

  30. E.A. Goldstein, R.E. Mitchell, Proc. Combust. Inst. 33, 2803 (2011)

    Article  CAS  Google Scholar 

  31. S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811 (1996)

    Article  CAS  Google Scholar 

  32. P.J. Soininen, K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, S. Haukka, J. Electrochem. Soc. 152, G122 (2005)

    Article  CAS  Google Scholar 

  33. A. Satta, D. Shamiryan, M.R. Baklanov, C.M. Whelan, Q. Toan Le, G.P. Beyer, A. Vantomme, K. Maex, J. Electrochem. Soc. 150, G300 (2003).

  34. L. Lecordier, S. Herregods, S. Armini, J. Vac. Sci. Technol. A 36, 031605 (2018)

    Article  CAS  Google Scholar 

  35. L.F. Peña, J.-F. Veyan, M.A. Todd, A. Derecskei-Kovacs, Y.J. Chabal, ACS Appl. Mater. Interfaces 10, 38610 (2018)

    Article  CAS  Google Scholar 

  36. C.-C. Chang, M.-C. Shu, J. Phys. Chem. B 107, 7076 (2003)

    Article  CAS  Google Scholar 

  37. L.L. Tedder, G. Lu, J.E. Crowell, J. Appl. Phys. 69, 7037 (1991)

    Article  CAS  Google Scholar 

  38. W. Xu, P.C. Lemaire, K. Sharma, D.M. Hausmann, S. Agarwal, J. Vac. Sci. Technol. A 38, 012401 (2019)

    Article  CAS  Google Scholar 

  39. M.U. Jewel, M.S. Mahmud, M.A. Monne, A. Zakhidov, M.Y. Chen, RSC Adv. 9, 1841 (2019)

    Article  Google Scholar 

  40. I.E. Wachs, R.J. Madix, Appl. Surf. Sci. 1, 303–328 (1978)

    Article  CAS  Google Scholar 

  41. H. Rajesh, U.S. Ozkan, Ind. Eng. Chem. Res. 32, 1622 (1993)

    Article  CAS  Google Scholar 

  42. R. Xu, Q. Tao, Y. Yang, C.G. Takoudis, Appl. Surf. Sci. 258, 8514 (2012)

    Article  CAS  Google Scholar 

  43. C.G. Takoudis, M. Singh, S.K. Selvaraj, 10214817 (26 February 2019).

  44. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, IBM J. Res. Dev. 42, 567–574 (1998)

    Article  CAS  Google Scholar 

  45. A.K. Bishal, Ph.D. Dissertation, University of Illinois at Chicago, Functionalization of Biomaterials with Atomic Layer Deposition for Tunable Performance Enhancements (2018)

  46. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005)

    Article  CAS  Google Scholar 

  47. N. Jayaraju, L. Barstad, D. Cleary, Z. Niazimbetova, T. Liao, C. Grand, J. Dziewiszek, M. Rzeznik, M. Lin, and D. Yee, in 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (IEEE, Taipei, Taiwan, 2016), pp. 52–55.

  48. M.C. Biesinger, Surf. Interface Anal. 49, 1325 (2017)

    Article  CAS  Google Scholar 

  49. C. Zhu, A. Osherov, M.J. Panzer, Electrochim. Acta 111, 771 (2013)

    Article  CAS  Google Scholar 

  50. S.-K. Lee, H.-C. Hsu, W.-H. Tuan, Mater. Res. 19, 51 (2016)

    Article  CAS  Google Scholar 

  51. W. Gaynor, C.G. Takoudis, G.W. Neudeck, J. Vac. Sci. Technol. A 14, 3224 (1996)

    Article  CAS  Google Scholar 

  52. C.G. Takoudis, CET89‐NASA Program, Electronic Materials Processing Database. (2019).

  53. X. Deng, A. Verdaguer, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, Langmuir 24, 9474 (2008)

    Article  CAS  Google Scholar 

  54. C. James, R. Xu, G. Jursich, C.G. Takoudis, The Journal of Undergraduate Research at the University of Illinois at Chicago 5, (2012).

  55. P. Keil, D. Lützenkirchen-Hecht, and R. Frahm, in AIP Conference Proceedings (AIP, Stanford, California (USA), 2007), pp. 490–492.

  56. H. Tamura, A. Tanaka, K. Mita, R. Furuichi, J. Colloid Interface Sci. 209, 225 (1999)

    Article  CAS  Google Scholar 

  57. P. Liu, J. Liu, M. Wang, R. Soc. Open Sci. 6, 181189 (2019)

    Article  CAS  Google Scholar 

  58. A.S. Zoolfakar, M.Z. Ahmad, R.A. Rani, J.Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuators B 185, 620 (2013)

    Article  CAS  Google Scholar 

  59. V. Gritsenko, D. Gritsenko, S. Shaimeev, V. Aliev, K. Nasyrov, S. Erenburg, V. Tapilin, H. Wong, M.C. Poon, J.H. Lee, J.-W. Lee, C.W. Kim, Microelectron. Eng. 81, 524 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. David Smith and colleagues from Lam research for many helpful discussions. EP copper samples were provided by Lam Research. Funding for this project was provided by Lam Research and the National Science Foundation, grant number DMR-1309114. This work made use of instruments in the Electron Microscopy Core of UIC's Research Resources Center. We are also thankful to Dr. Jordi Cabana from UIC for the use of his glove box for filling our precursor bubbler. We thank Harshdeep Singh Bhatia, graduate student, UIC and our fellow lab member for building the spectral ellipsometry models for EP Cu. Portion of this work was performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by Northwestern University, the Dow Chemical Company, and DuPont de Nemours, Inc. The authors are grateful for the help of the APS staff scientist Qing Ma. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors thank Sungjoon Kim and Ngoc Hoang Lan Nguyen from Berry Research Laboratory, UIC for the atomic force microscopy analyses.

Funding

Funding for this project was provided by Lam Research and the National Science Foundation, Grant Number DMR-1309114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos G. Takoudis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N., Saha, S., Jursich, G. et al. Optimization of substrate-selective atomic layer deposition of zirconia on electroplated copper using ethanol as both precursor reactant and surface pre-deposition treatment. J Mater Sci: Mater Electron 32, 5442–5456 (2021). https://doi.org/10.1007/s10854-021-05267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05267-0

Navigation