Skip to main content
Log in

Impact of drying temperature on the photovoltaic performance and impedance spectra of hole transport material free air processed perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the rapid increase in power conversion efficiency (PCE) of organic–inorganic perovskite solar cells (PSCs) and exceeding the PCE achieved in conventional single-junction silicon solar cells this technology has become the focus of research. The quality of perovskite film plays a vital role in developing the high performance PSCs and depends upon many factors, such as, composition of the perovskite, growth method, drying temperature, etc. In this work, hole transport material free (HTM-free) glass/FTO/c-TiO2/m-TiO2/m-ZrO2/Carbon electrode based PSCs are fabricated. Effect of prevoskite drying temperature on the photovoltaic performance and impedance spectra of these devices is studied by varying temperature from 50 to 70 °C. The photovoltaic and impedance spectra of the devices are observed to be highly dependent on the drying temperature. The best power conversion efficiency is obtained for drying temperature of 60 °C. These results show that determining the optimum drying temperature is crucial to ensure formation of perovskite crystals, highest surface coverage of perovskite, highest light harvesting and successful charge extraction from the fabricated devices in order to achieve highest performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)

    Article  CAS  Google Scholar 

  2. A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem. Lett. 41, 397–399 (2012)

    Article  CAS  Google Scholar 

  3. C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    Article  CAS  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  5. NREL, Best Research-Cell Efficiencies (National Renewable Energy Laboratory, Golden, CO, 2020)

    Google Scholar 

  6. J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016)

    Article  CAS  Google Scholar 

  7. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Func. Mater. 24, 3250–3258 (2014)

    Article  CAS  Google Scholar 

  8. Y. Liu, S. Ji, S. Li, W. He, K. Wang, H. Hu et al., Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell. J. Mater. Chem. A 3, 14902–14909 (2015)

    Article  CAS  Google Scholar 

  9. H. Zhang, Y. Wang, H. Wang, M. Ma, S. Dong, Q. Xu, Influence of drying temperature on morphology of MAPbI3 thin films and the performance of solar cells. J. Alloys Compd. 773, 511–518 (2019)

    Article  CAS  Google Scholar 

  10. X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman, J.S. Owen et al., Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015)

    Article  CAS  Google Scholar 

  11. J. Shao, S. Yang, Y. Liu, Efficient bulk heterojunction CH3NH3PbI3–TiO2 solar cells with TiO2 nanoparticles at grain boundaries of perovskite by multi-cycle-coating strategy. ACS Appl. Mater. Interfaces 9, 16202–16214 (2017)

    Article  CAS  Google Scholar 

  12. M. Salado, J. Idigoras, L. Calio, S. Kazim, M.K. Nazeeruddin, J.A. Anta et al., Interface play between perovskite and hole selective layer on the performance and stability of perovskite solar cells. ACS Appl. Mater. Interfaces 8, 34414–34421 (2016)

    Article  CAS  Google Scholar 

  13. S. Nho, G. Baek, S. Park, B.R. Lee, M.J. Cha, D.C. Lim et al., Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy Environ. Sci. 9, 240–246 (2016)

    Article  CAS  Google Scholar 

  14. L. Etgar, Hole transport material (HTM) free perovskite solar cell, in Hole Conductor Free Perovskite-based Solar Cells. (Springer, Cham, 2016), pp. 9–24

    Google Scholar 

  15. L. Etgar, Hole-transport material-free perovskite-based solar cells. MRS Bull. 40, 674–680 (2015)

    Article  CAS  Google Scholar 

  16. L. Lin, L. Jiang, Y. Qiu, Y. Yu, Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices Microstruct. 104, 167–177 (2017)

    Article  CAS  Google Scholar 

  17. S.S. Mali, C. Betty, P. Bhosale, P. Patil, Eosin-Y and N3-Dye sensitized solar cells (DSSCs) based on novel nanocoral TiO2: a comparative study. Electrochim. Acta 59, 113–120 (2012)

    Article  CAS  Google Scholar 

  18. N. Koide, A. Islam, Y. Chiba, L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol. A 182, 296–305 (2006)

    Article  CAS  Google Scholar 

  19. T. Hanmin, Z. Xiaobo, Y. Shikui, W. Xiangyan, T. Zhipeng, L. Bin et al., An improved method to estimate the equivalent circuit parameters in DSSCs. Sol. Energy 83, 715–720 (2009)

    Article  CAS  Google Scholar 

  20. C. Jiang, X. Sun, K. Tan, G. Lo, A. Kyaw, D. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 92, 143101 (2008)

    Article  CAS  Google Scholar 

  21. L.-C. Chen, C.-C. Chen, J.-C. Chen, C.-G. Wu, Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process. Sol. Energy 122, 1047–1051 (2015)

    Article  CAS  Google Scholar 

  22. C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-micro Lett. 8, 347–357 (2016)

    Article  CAS  Google Scholar 

  23. P. Bhatt, K. Pandey, P. Yadav, B. Tripathi, M.K. Pandey, M. Kumar, Investigating the charge carrier transport within the hole-transport material free perovskite solar cell processed in ambient air. Sol. Energy Mater. Sol. Cells 140, 320–327 (2015)

    Article  CAS  Google Scholar 

  24. Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013)

    Article  Google Scholar 

  25. E. Von Hauff, Impedance spectroscopy for emerging photovoltaics. J. Phys. Chem. C 123, 11329–11346 (2019)

    Article  CAS  Google Scholar 

  26. A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016)

    Article  CAS  Google Scholar 

  27. V. Nandal, P.R. Nair, Anomalous scaling exponents in the capacitance-voltage characteristics of perovskite thin film devices. J. Phys. Chem. C 122, 27935–27940 (2018)

    Article  CAS  Google Scholar 

  28. A. Braña, E. Forniés, N. López, B. García, High efficiency Si solar cells characterization using impedance spectroscopy analysis. J. Phys.: Conf. Ser. 647, 012069 (2015)

    Google Scholar 

  29. H. Lee, C. Lee, H.-J. Song, Influence of electrical traps on the current density degradation of inverted perovskite solar cells. Materials 12, 1644 (2019)

    Article  CAS  Google Scholar 

  30. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9, 847–851 (2008)

    Article  CAS  Google Scholar 

  31. I. Mora-Seró, G. Garcia-Belmonte, P.P. Boix, M.A. Vázquez, J. Bisquert, Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ. Sci. 2, 678–686 (2009)

    Article  CAS  Google Scholar 

  32. D. Benetti, K.T. Dembele, J. Benavides, H. Zhao, S. Cloutier, I. Concina et al., Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells. J. Mater. Chem. C 4, 3555–3562 (2016)

    Article  CAS  Google Scholar 

  33. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan et al., Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015)

    Article  CAS  Google Scholar 

  34. A. Philip, Effect of frequency and bias voltage on the electrical and dielectric properties of atomic layer deposited Al/Al2O3/p-Si MOS structure at room temperature. Indian J. Pure Appl. Phys. (IJPAP) 53, 464–469 (2015)

    Google Scholar 

  35. A. Özdemir, D. Akcan, H. Lapa, A. Yavuz, S. Duman, On the frequency CV and GV characteristics of Au/poly (3-substituted thiophene)(P3DMTFT)/n-GaAs Schottky barrier diodes. Acta Phys. Pol. A 128, B450–B454 (2015)

    Article  CAS  Google Scholar 

  36. S.A.A. Shah, M.H. Sayyad, N. Nasr, R.A. Toor, S. Sajjad, H. Elbohy et al., Photovoltaic performance and impedance spectroscopy of a purely organic dye and most common metallic dye based dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 28, 6552–6559 (2017)

    CAS  Google Scholar 

  37. R.A. Toor, M.H. Sayyad, S.A.A. Shah, N. Nasr, F. Ijaz, M.A. Munawar, Synthesis, computational study and characterization of a 3-{[2,3-diphenylquinoxalin-6-yl] diazenyl}-4-hydroxy-2H-chromen-2-one azo dye for dye-sensitized solar cell applications. J. Comput. Electron. 17, 821–829 (2018)

    Article  CAS  Google Scholar 

  38. N. Nasr, M. Sayyad, Enhanced performance in dye-sensitized solar cell via laser generated noble metal nanoparticles treatment of photoelectrode. J. Optoelectron. Adv. Mater. 20, 618–623 (2018)

    CAS  Google Scholar 

  39. O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, On Mott–Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109, 173903 (2016)

    Article  CAS  Google Scholar 

  40. P. Yadav, D. Prochowicz, M. Saliba, P.P. Boix, S.M. Zakeeruddin, M. Grätzel, Interfacial kinetics of efficient perovskite solar cells. Crystals 7, 252 (2017)

    Article  CAS  Google Scholar 

  41. S. Ravishankar, S. Gharibzadeh, C. Roldán-Carmona, G. Grancini, Y. Lee, M. Ralaiarisoa et al., Influence of charge transport layers on open-circuit voltage and hysteresis in perovskite solar cells. Joule 2, 788–798 (2018)

    Article  CAS  Google Scholar 

  42. I. Dharmadasa, Y. Rahaq, A. Ojo, T. Alanazi, Perovskite solar cells: a deep analysis using current–voltage and capacitance–voltage techniques. J. Mater. Sci.: Mater. Electron. 30, 1227–1235 (2019)

    CAS  Google Scholar 

  43. W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013)

    Article  CAS  Google Scholar 

  44. S. Aharon, S. Gamliel, B. El Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support extended by the HEC Pakistan and US National Academy of Sciences, under the PAK-US Science and Technology Cooperative Program, Phase-V, Project Number 5-530/PAK-US/HEC/2013/193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hassan Sayyad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, I., Sayyad, M.H., Ali, S.R. et al. Impact of drying temperature on the photovoltaic performance and impedance spectra of hole transport material free air processed perovskite solar cells. J Mater Sci: Mater Electron 32, 5353–5360 (2021). https://doi.org/10.1007/s10854-021-05240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05240-x

Navigation