Skip to main content
Log in

Microstructure and microwave absorption properties of ZnO with different surfactants by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO with three different morphologies were synthesized by hydrothermal method with sodium citrate, polyethylene glycol 2000 (PEG2000) and cetyltrimethylammonium bromide (CTAB) as surfactants, and zinc acetate as the precursor. The phase structure and morphology of zinc oxide were investigated by X-ray diffractometry (XRD), scanning- and transmission electron microscopy (SEM/TEM), while vector network analysis was involved in the characterization of the electromagnetic parameters of the samples. The effect of different surfactants on the structure, morphology, and electromagnetic absorption properties of zinc oxide was also investigated. ZnO obtained with CTAB as the surfactant showed an excellent wave absorption performance at the frequency range of 9.93–18 GHz by adjusting the sample's matching thickness. When this was 5.39 mm, a minimum return loss of − 52.86 dB was obtained at 17.76 GHz, while at 5.74 mm, the effective absorption bandwidth reached 2.32 GHz (15.68–18 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Xiong, L. Wang, S.U. Rehman, Y. Chen, Carbon coated core-shell FeSiCr/Fe3C embedded in carbon nanosheets network nanocomposites for improving microwave absorption performance. Nano: Brief Rep. Rev. 15, 2050094 (2020)

    Article  CAS  Google Scholar 

  2. F. Mohammadkhani, M. Montazer, M. Latifi, Microwave absorption characterization and wettability of magnetic nano iron oxide/recycled PET nanofibers web. J. Text. Inst. 110, 989 (2019)

    Article  CAS  Google Scholar 

  3. S. Acharya, C. Gopinath, P.S. Alegaonkar, S. Datar, Enhanced microwave absorption property of reduced graphene oxide (RGO)–Strontiumhexa–Ferrite (SF)/Poly (Vinylidene) Fluoride (PVDF). Diam. Relat. Mater. 89, 28 (2018)

    Article  CAS  Google Scholar 

  4. D. Mandal, A. Gorai, K. Mandal, Electromagnetic wave trapping in NiFe 2 O 4 nano-hollow spheres: an efficient microwave absorber. J. Magn. Magn. Mater. 485, 43 (2019)

    Article  CAS  Google Scholar 

  5. V. Mishra, R. Panwar, A. Singh, S. Puthucheri, D. Singh, Critical analysis of periodic fractal frequency selective surfaces coupled with synthesized ferrite-based dielectric substrates for optimal radar wave absorption. IET Sci. Meas. Technol.s 13(6), 794 (2019)

    Article  Google Scholar 

  6. E. Handoko, I. Sugihartono, M.A. Marpaung, M. Randa, M. Alaydrus, N. Sofyan, Double layer microwave absorption characteristics of barium hexaferrite/silica composite for X-band frequencies. Mater. Sci. Forum 929, 109 (2018)

    Article  Google Scholar 

  7. A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, V.A. Vlasov, V.I. Suslyaev, V.A. Zhuravlev, E.Y. Korovin, O.A. Dotsenko, Study of the Radio-Wave Absorbing Properties of a Lithium-Zinc Ferrite Based Composite. Russ. Phys. J. 57(5), 621 (2014)

    Article  CAS  Google Scholar 

  8. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Compos. B 137, 260 (2018)

    Article  CAS  Google Scholar 

  9. F. Ren, Z. Guo, Y. Shi, L. Jia, Y. Qing, P. Ren, D. Yan, Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. J. Alloys Compd. 768, 6 (2018)

    Article  CAS  Google Scholar 

  10. A.G. D’Aloia, F. Marra, A. Tamburrano, G.D. Bellis, M.S.J.C. Sarto, Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon 73, 175–184 (2014)

    Article  Google Scholar 

  11. J. Rezania, H. Rahimi, Investigating the carbon materials’ microwave absorption and its effects on the mechanical and physical properties of carbon fiber and carbon black/ polypropylene composites. J Compos. Mater. 51, 2263 (2016)

    Article  Google Scholar 

  12. W. Huang, S. Wei, Y. Wang, B. Wang, Y. Liang, Y. Huang, B. Xu, a new broadband and strong absorption performance FeCO3/RGO microwave absorption nanocomposites. Materials 12(13), 2206 (2019)

    Article  CAS  Google Scholar 

  13. M. Green, Z. Liu, X. Peng, L. Yan, X.J.L.S. Chen, Applications, doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci. Appl. 7(1), 1 (2018)

    Article  CAS  Google Scholar 

  14. M. Cai, A. Shui, X. Wang, C. He, J.J. Qian, B. Du, A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 15568 (2020)

    Article  Google Scholar 

  15. G. He, Y. Duan, H. Pang, J.H.J.A.M. Interfaces, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces (2020). https://doi.org/10.1002/admi.202000407

    Article  Google Scholar 

  16. C. Forsyth, T. Taras, A. Johnson, J. Zagari, Microwave assisted surfactant-thermal synthesis of metal-organic framework materials. Appl. Sci. 10(13), 4563 (2020)

    Article  CAS  Google Scholar 

  17. X.Y. Tao, X.B. Zhang, F.Z. Kong, S. Lin, G.L.J.A.C.S. Xu, PEG assisted hydrothermal synthesis of ZnO nanorods. Acta Chim. Sinica 62(17), 1658–1662 (2004)

    CAS  Google Scholar 

  18. Q.C. Chen, X.D. Liu, H.Y. Deng, Study on the effect of additives and temperature on the morphology of ZnO. Inorg. Chem. Ind. 37(10), 34–36 (2005)

    Google Scholar 

  19. Y.F. Yan, Z.Y. Zhang, T.G. You, W. Zhao, J.N. Yun, F.C. Zhang, Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles. Chin. Phys. B 18(10), 4552–4557 (2009)

    Article  CAS  Google Scholar 

  20. C. Wu, X. Qiao, J. Chen, Controllable ZnO morphology via simple template-free solution route. Mater. Chem. Phys. 102(1), 7–12 (2007)

    Article  CAS  Google Scholar 

  21. X. Wang, Q. Zhang, Q. Wan, Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J. Phys. Chem. C 115(6), 2769–2775 (2012)

    Article  Google Scholar 

  22. W. Peng, S. Qu, G. Cong, Synthesis and structures of morphology-controlled ZnO nano- and microcrystals. Cryst. Growth Des. 6(6), 1518–1522 (2006)

    Article  CAS  Google Scholar 

  23. W.J. Li, E.W. Shi, W.Z. Zhong, Growth mechanism and growth habit of oxide crystals. J. Synth. Crystals 203(1–2), 186–196 (2001)

    Google Scholar 

  24. Z. Hui, D. Yang, Y. Ji, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 108(13), 3955–3958 (2004)

    Article  Google Scholar 

  25. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341 (1941)

    Article  CAS  Google Scholar 

  26. M. Cao, J. Zhu, J. Yuan, T. Zhang, Z. Peng, Z. Gao, G. Xiao, S. Qin, Computation design and performance prediction towards a multi-layer microwave absorber. Mater. Des. 23(6), 557 (2002)

    Article  Google Scholar 

  27. G. Shi, B. Zhang, X. Wang, Y. Fu, Enhanced microwave absorption properties of core double-shell type Fe@C@BaTiO 3 nanocapsules. J. Alloys Compd. 655, 130 (2016)

    Article  CAS  Google Scholar 

  28. H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020)

    Article  CAS  Google Scholar 

  29. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27(6), 5462–5464 (1991)

    Article  CAS  Google Scholar 

  30. K.J. Vinoy, Radar Absorbing Materials: Theory to Design and Characterization. Institution of Engineering and Technology (Kluwer Academic Publishers, Boston, MA, 1996).

    Book  Google Scholar 

  31. J.L. Liu, Z.H. Zhao, L.M. Zhang, Toward the application of electromagnetic wave absorption by two-dimension materials. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03800-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from the National Key R&D Program of China (2019YFB1311100), National Natural Science Foundation of China (Project 51675533, 51701238 and 51905543), National Defense Science and Technology Excellence Young Scientists Foundation (2017-JCJQ-ZQ-001), Equipment pre-research sharing technology project of “13th five-year” (41404010205) and China Postdoctoral Science Foundation (2018M643857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yuan, Y., Wang, B. et al. Microstructure and microwave absorption properties of ZnO with different surfactants by hydrothermal method. J Mater Sci: Mater Electron 32, 25908–25918 (2021). https://doi.org/10.1007/s10854-020-05226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05226-1

Navigation