Skip to main content
Log in

Enhanced piezoelectric properties of Ce-doped Bi3Ti1.5W0.5O9 high-temperature Aurivillius piezoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi3−xCexTi1.5W0.5O9(BTW-xCe,0.00 ≤ x ≤ 0.10) bismuth-layered ceramics were synthesized through a conventional solid-phase reaction process. The impact of Ce ion doping on lattice structures and electrical performance of BTW-xCe ceramic sample has been discussed. All the ceramic samples show a single bismuth-layered structure. Lattice distortion was observed to decrease according to Rietveld structure refinement of XRD patterns. Oxygen vacancies in ceramic grains mainly contribute to the conductivity of samples at high temperature. With the incorporation of Ce dopant, the dielectric loss (tanδ) was decreased and the piezoelectric constant (d33) was enhanced owning to the reduced oxygen vacancy concentration confirmed by an increase of conductance activation energy. The composition of BTW-0.06Ce ceramic exhibits optimal electrical performance with a large d33 of 17.2 pC/N (twice as large as that of undoped BTW), low tanδ of 0.16%, high Tc of 727 °C, and the piezoelectric property has good stability before 600 °C, which shows that the ceramic material has potential application prospect at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Zhang, F.P. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  CAS  Google Scholar 

  2. H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999)

    Article  CAS  Google Scholar 

  3. A.-P. de Araujo, J.D. Cuchiaro, L.D. McMillan, J.F. Scott, M.C. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995)

    Article  Google Scholar 

  4. B. Aurivillius, Mixed bismuth oxides with layer lattices. 2. Structure of Bi4Ti3O12. Arkiv Kemi 1, 499–512 (1949)

    CAS  Google Scholar 

  5. C. Subbarao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  CAS  Google Scholar 

  6. L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, K.S. Oh, Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45–96 (2004)

    Article  CAS  Google Scholar 

  7. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, G.Z. Cao, Doping effect in layer structured SrBi2Nb2O9 ferroelectrics. J. Appl. Phys. 90, 5296–5302 (2001)

    Article  CAS  Google Scholar 

  8. T. Kikuchi, Synthesis of new, layered bismuth titanates, Bi7Ti4NbO21 and Bi6Ti3WO18. J. Alloys Compd. 48, 319–323 (1976)

    CAS  Google Scholar 

  9. S. Kim, J.S. Lee, H.J. Lee, C.W. Ahn, I.W. Kim, M.S. Jang, Control of the ferroelectric and electrical properties of Nd substituted bismuth titanate ceramics. J. Electroceram. 21, 633–636 (2008)

    Article  CAS  Google Scholar 

  10. M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Cation distribution and structural instability in Bi4-xLaxTi3O12. Jpn. J. Appl. Phys. 40, 5572–5575 (2001)

    Article  CAS  Google Scholar 

  11. E.V. Ramana, S.V. Suryanarayana, T.B. Sankaram, ac impedance studies on ferroelectromagnetic SrBi5−xLaxTi4FeO18 ceramics. Mater. Res. Bull. 41, 1077–1088 (2006)

    Article  CAS  Google Scholar 

  12. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu, Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl. Phys. Lett. 89, 1719 (2006)

    Article  Google Scholar 

  13. Q. Wang, C.M. Wang, J.F. Wang, S.J. Zhang, High performance Aurivillius-type bismuth titanate niobate (Bi3TiNbO9) piezoelectric ceramics for high temperature applications. Ceram. Int. 42, 6993–7000 (2016)

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Li, X. Chai, X. Wang, X. Yao, Enhanced electrical properties, color-tunable up-conversion luminescence, temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics. J. Appl. Phys. 121, 124102 (2017)

    Article  Google Scholar 

  15. C.M. Wang, J.F. Wang, High performance Aurivillius phase sodium–potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. J. Appl. Phys. 89, 202905.1-202905.3 (2006)

    Google Scholar 

  16. A. Chakrabarti, J. Bera, Structure and relaxor behavior of BaBi4Ti4–xZrxO15 ceramics. Curr. Appl. Phys. 10, 574–579 (2010)

    Article  Google Scholar 

  17. V.D. Phadtare, V.G. Parale, G.K. Kulkarni, H.H. Park, V.R. Puri, Microwave dielectric properties of barium substituted screen printed CaBi2Nb2O9 ceramic thick films. Ceram. Int. 44, 7515–7523 (2018)

    Article  CAS  Google Scholar 

  18. Y.L. Jiang, X.P. Jiang, C. Chen, Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15-Bi4Ti3O12 inter-growth ferroelectric ceramics. Front. Mater. Sci. 11, 51–58 (2017)

    Article  Google Scholar 

  19. C.M. Raghavan, J.W. Kim, T.K. Song, S.S. Kim, Microstructural and ferroelectric properties of rare earth (Ce, Pr, and Tb)-doped Na0.5Bi4.5Ti3O15 thin films. Appl. Surf. Sci. 355, 1007–1012 (2015)

    Article  CAS  Google Scholar 

  20. C. Qin, Z.Y. Shen, W.Q. Luo, F.S. Song, Z.M. Wang, Y.M. Li, Microstructure related properties enhancing in Ce-doped CaBi2Nb2O9 high temperature piezoelectric ceramics. Mater. Res. Express 6, 106308–106321 (2019)

    Article  CAS  Google Scholar 

  21. X.X. Zeng, J.C. Yang, L. Zuo, B.B. Yang, J. Qin, Z.H. Peng, Li/Ce/La multidoping on crystal structure and electric properties of CaBi2Nb2O9 piezoceramics. J. Inorg. Mater. 34, 379–386 (2019)

    Article  Google Scholar 

  22. L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, G.R. Li, Strong red emission and enhanced ferroelectric properties in (Pr, Ce)-modified Na0.5Bi4.5Ti4O15 multifunctional ceramic. J. Mater. Sci. Mater. Electron. 27, 12216–12221 (2016)

    Article  CAS  Google Scholar 

  23. C. Long, Q. Chang, Y. Wu, W.F. He, Y.H. Li, H.Q. Fan, New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5-xTi4O15: crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 8852–8864 (2015)

    Article  CAS  Google Scholar 

  24. N.C. Hyatt, I.M. Reaney, K.S. Knight, Ferroelectric-paraelectric phase transition in the n=2 Aurivillius phase Bi3Ti1.5W0.5O9: a neutron powder diffraction study. Phys. Rev. B 71, 024119 (2005)

    Article  Google Scholar 

  25. L.L. Zheng, S.C. Qi, C.M. Wang, L. Shi, Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta. Phys. Sin-Ch. Ed. 68, 147701 (2019)

    Article  Google Scholar 

  26. P. Durán-Martín-, A. Castro, P. Millán, B. Jiménez, Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9. J. Mater. Res. 13, 2565–2571 (1998)

    Article  Google Scholar 

  27. S. Ezhilvalavan, J.M. Xue, J. Wang, Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Mater. Chem. Phys. 75, 50–55 (2002)

    Article  CAS  Google Scholar 

  28. Y. Wu, S.J. Limmer, T.P. Chou, C. Nguyen, G.Z. Cao, Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J. Mater. Sci. Lett. 21, 947–949 (2002)

    Article  CAS  Google Scholar 

  29. V.A. Isupov, Some characteristic features of layered ferroelectrics of the type Am1Bi2MmO3m+3. Phys. Solid State 39, 116–117 (1997)

    Article  Google Scholar 

  30. C.L. Diao, H.W. Zheng, Y.G. Zhang, Z. Chen, L. Fang, Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4 O15 ceramics. Ceram. Int. 40, 13827–13832 (2014)

    Article  CAS  Google Scholar 

  31. R. Ridarane, S. Subramanian, N. Janani, R. Murugan, Investigation on microstructure, dielectric and impedance properties of Sr1-x Bi2+(2/3)x(VxTa1−x)2O9[x=0, 0.1 and 0.2] ceramics. J. Alloys Compd. 492, 642–648 (2010)

    Article  Google Scholar 

  32. Z. Peng, Q. Chen, D. Liu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Curr. Appl. Phys. 13, 1183–1187 (2013)

    Article  Google Scholar 

  33. Q. Xu, M.T. Lanagan, W. Luo, L. Zhang, J. Xie, H. Hao, H. Liu, Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. J. Eur. Ceram. Soc. 36, 2469–2477 (2016)

    Article  CAS  Google Scholar 

  34. X.X. Xie, Z.Y. Zhou, T.Z. Wang, R.H. Liang, X.L. Dong, High temperature impedance properties and conduction mechanism of W6+-doped CaBi4Ti4O15 Aurivillius piezoceramics. J. Appl. Phys. 124, 204101 (2018)

    Article  Google Scholar 

  35. J.S. Zhuang, X.P. Jiang, C. Chen, X.K. Huang, X. Nie, Y.J. Jiang, Enhanced piezoelectric properties and low electrical conductivity of Ce-doped Bi 7 Ti 4.5 W 0.5 O 21 intergrowth piezoelectric ceramics. Ceram. Int. 46, 26616–26625 (2020)

    Article  CAS  Google Scholar 

  36. I. Pribošič, D. Makovec, M. Drofenik, Electrical properties of donor- and acceptor-doped BaBi4Ti4O15. J. Eur. Ceram. Soc. 21, 1327–1331 (2001)

    Article  Google Scholar 

  37. X. Tian, S. Qu, H. Ma, Z. Pei, B. Wang, Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics. J. Mater. Sci. Mater. Electron. 27, 13309–13313 (2016)

    Article  CAS  Google Scholar 

  38. G. Liu, J. Yuan, R. Nie, L.M. Jiang, Z. Tan, J.G. Zhu, Q. Chen, Electrical properties and thermal stability of Ce-modified Ca0.80(Li0.5Bi0.5)0.20Bi2Nb2O9 ceramics. J. Alloys Compd. 697, 380–387 (2017)

    Article  CAS  Google Scholar 

  39. P. Fang, P. Liu, Z. Xi, W. Long, X. Li, Effect of cerium additives on structure and electrical properties of Aurivillius oxides (K 0.16 Na 0.84)0.5 Bi 4.5Ti 4O15. Mater. Sci. Eng. B 186, 21–25 (2014)

    Article  CAS  Google Scholar 

  40. R. Nie, J. Yuan, Q. Chen, J. Xing, J. Zhu, W. Zhang, Crystal distortion and electrical properties of Ce-doped BIT-based piezoelectric ceramics. J. Am. Ceram. Soc. 102, 5432–5442 (2019)

    Article  CAS  Google Scholar 

  41. B. Luo, Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films. J. Appl. Phys. 122, 195104 (2017)

    Article  Google Scholar 

  42. L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 110, 17860–17865 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51762024, 51862016, 11947092), the Natural Science Foundation of Jiangxi Province (No. 20192BAB212002, 20192BAB206008), and Foundation of Jiangxi Provincial Education Department (Nos. GJJ190712, GJJ180718, GJJ180739).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Jiang, X., Chen, C. et al. Enhanced piezoelectric properties of Ce-doped Bi3Ti1.5W0.5O9 high-temperature Aurivillius piezoceramics. J Mater Sci: Mater Electron 32, 4300–4310 (2021). https://doi.org/10.1007/s10854-020-05173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05173-x

Navigation