Skip to main content
Log in

Pulsed photon treatment effect on the optical bandgap of LiNbO3 films grown by radio-frequency magnetron sputtering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Amorphous lithium niobate (LiNbO3) films with the direct optical bandgap close to the bulk LiNbO3 were fabricated by radio-frequency magnetron sputtering (RFMS) technique in an Ar, Ar(90%) + O2(10%), and Ar(60%) + O2(40%) reactive gas environments. LiNbO3 films synthesized in an Ar(60%) + O2(40%) gas mixture manifest a higher magnitude of the indirect optical bandgap due to a higher defect concentration. The pulsed photon treatment (PPT) leads to the crystallization of the as-grown LiNbO3 films affecting the indirect bandgap Egindir more efficiently compared to the conventional thermal annealing. PPT influences Egindir of the studied films oppositely: it decreases Egindir for the films grown in an Ar and Ar(90%) + O2(10%) environments, whereas Egindir is decreased for the films synthesized in an Ar(60%) + O2(40%) gas mixture after PPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The targets were fabricated in the Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the Russian Academy of Science (Apatity).

References

  1. M. Sumets, Lithium Niobate-Based Heterostructures: Synthesis, Properties and Electron Phenomena (IOP Publishing Ltd, Bristol, UK, 2018).

    Google Scholar 

  2. M.P. Sumets, V.A. Dybov, V.M. Ievlev, Inorg. Mater. 53, 1361 (2017)

    Article  CAS  Google Scholar 

  3. Y. Sakashita, H. Segawa, J. Appl. Phys. 77, 5995 (1995)

    Article  CAS  Google Scholar 

  4. S.M. Taleb, M.A. Fakhri, S.A. Adnan, Defect Diffus. Forum 398, 16 (2020)

    Google Scholar 

  5. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, J. Mater. Sci. Mater. Electron. 27, 13105 (2016)

    Article  CAS  Google Scholar 

  6. S.I. Gudkov, M.V. Kamenshchikov, A.V. Solnyshkin, I.L. Kislova, A.N. Belov, D.A. Kiselev, R.N. Zhukov, M.D. Malinkovich, Ferroelectrics 544, 62 (2019)

    Article  CAS  Google Scholar 

  7. G. Atak, Ö.D. Coşkun, Opt. Mater. (Amst). 82, 160 (2018)

    Article  CAS  Google Scholar 

  8. V.M. Ievlev, E.K. Belonogov, V.A. Dybov, S.V. Kannykin, D.V. Serikov, A.V. Sitnikov, M.P. Sumets, Inorg. Mater. 55, 1237 (2019)

    Article  CAS  Google Scholar 

  9. H. Akazawa, M. Shimada, J. Mater. Res. 22, 1726 (2007)

    Article  CAS  Google Scholar 

  10. A.Z. Simões, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, J. Eur. Ceram. Soc. 24, 1607 (2004)

    Article  Google Scholar 

  11. M. Sumets, A. Kostyuchenko, V. Ievlev, S. Kannykin, V. Dybov, J. Mater. Sci. Mater. Electron. 26, 4250 (2015)

    Article  CAS  Google Scholar 

  12. M. Sumets, V. Ievlev, A. Kostyuchenko, Mol. Cryst. Liq. Cryst. 603, 202 (2014)

    Article  CAS  Google Scholar 

  13. J. Luo, X. He, J. Zhou, W. Wang, W. Xuan, J. Chen, H. Jin, Y. Xu, S. Dong, Procedia Eng. 120, 717 (2015)

    Article  CAS  Google Scholar 

  14. E.T. Salim, M.A. Fakhri, R.A. Ismail, A.W. Abdulwahhab, Z.T. Salim, M.A. Munshid, U. Hashim, Superlattices Microstruct. 128, 67 (2019)

    Article  CAS  Google Scholar 

  15. M. Sumets, V. Ievlev, V. Dybov, A. Kostyuchenko, D. Serikov, S. Kannykin, E. Belonogov, J. Mater. Sci. Mater. Electron. 30, 16562 (2019)

    Article  CAS  Google Scholar 

  16. R. Dharmadasa, B. Lavery, I.M. Dharmadasa, T. Druffel, A.C.S. Appl, Mater. Interfaces 6, 5034 (2014)

    Article  CAS  Google Scholar 

  17. O.F. Schirmer, O. Thiemann, M. Wöhlecke, J. Phys. Chem. Solids 52, 185 (1991)

    Article  CAS  Google Scholar 

  18. R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, M.K. Swami, H.S. Patel, P.K. Gupta, Phys. Status Solidi 209, 176 (2012)

    Article  CAS  Google Scholar 

  19. J.Y. Yang, W.S. Li, H. Li, Y. Sun, R.F. Dou, C.M. Xiong, L. He, J.C. Nie, Appl. Phys. Lett. 95, 213105 (2009)

    Article  Google Scholar 

  20. S. Satapathy, C. Mukherjee, T. Shaktawat, P.K. Gupta, V.G. Sathe, Thin Solid Films 520, 6510 (2012)

    Article  CAS  Google Scholar 

  21. A. Dhar, A. Mansingh, J. Appl. Phys. 68, 5804 (1990)

    Article  CAS  Google Scholar 

  22. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, Z.T. Salim, U. Hashim, J. Phys. Chem. Solids 131, 180 (2019)

    Article  CAS  Google Scholar 

  23. S. Shandilya, A. Sharma, M. Tomar, V. Gupta, Thin Solid Films 520, 2142 (2012)

    Article  CAS  Google Scholar 

  24. J. Chaos, A. Perea, J. Gonzalo, R. Dreyfus, C. Afonso, J. Perrière, Appl. Surf. Sci. 154, 473 (2000)

    Article  Google Scholar 

  25. Z. Jiangou, Z. Shipin, X. Dingquan, W. Xiu, X. Guanfeng, J. Phys. Condens. Matter 4, 2977 (1992)

    Article  Google Scholar 

  26. M. Sumets, V. Ievlev, A. Kostyuchenko, V. Dybov, G. Kotov, A. Sidorkin, Ceram. Int. 44, 15058 (2018)

    Article  CAS  Google Scholar 

  27. M. Sumets, A. Kostyuchenko, V. Ievlev, S. Kannykin, V. Dybov, J. Mater. Sci. Mater. Electron. 26, 7853 (2015)

    Article  CAS  Google Scholar 

  28. M. Sumets, O. Ovchinnikov, V. Ievlev, A. Kostyuchenko, Ceram. Int. 43, 13565 (2017)

    Article  CAS  Google Scholar 

  29. M. A. Fakhri, N. H. Numan, M. H. Kheder, B. A. Badr, F. G. Khalid, U. Hashim, E. T. Salim, and Z. T. Salim, in AIP Conf. Proc. (American Institute of Physics Inc., 2018).

  30. M. Sumets, V. Ievlev, A. Kostyuchenko, V. Vakhtel, S. Kannykin, A. Kobzev, Thin Solid Films 552, 32 (2014)

    Article  CAS  Google Scholar 

  31. C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Phys. Status Solidi 7, 362 (2010)

    CAS  Google Scholar 

  32. M. Fox, Optical Properties of Solids, 2nd edn. (Oxford University Press, New York, 2010).

    Google Scholar 

  33. D. Redfield, W.J. Burke, J. Appl. Phys. 45, 4566 (1974)

    Article  CAS  Google Scholar 

  34. X. Li, Y. Kong, H. Liu, L. Sun, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, G. Zhang, Origin of the Generally Defined Absorption Edge of Non-Stoichiometric Lithium Niobate Crystals. Solid State Commun. 141(3), 113–116 (2007)

    Article  CAS  Google Scholar 

  35. G. Griffel, S. Ruschin, A. Hardy, M. Itzkovitz, N. Croitoru, Thin Solid Films 126, 185 (1985)

    Article  CAS  Google Scholar 

  36. S. Shandilya, M. Tomar, V. Gupta, J. Appl. Phys. 111, 10 (2012)

    Article  Google Scholar 

  37. A. Tumuluri, M.S.S. Bharati, S.V. Rao, K.C. James Raju, Mater. Res. Bull. 94, 342 (2017)

    Article  CAS  Google Scholar 

  38. O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, and D. J. Phys. Condens. Matter 21, 123201 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (Grant No. 18-29-11062 «Synthesis of lithium niobate films for an elemental basis of opto- acousto- and microelectronic devices»).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sumets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumets, M., Belonogov, E., Dybov, V. et al. Pulsed photon treatment effect on the optical bandgap of LiNbO3 films grown by radio-frequency magnetron sputtering method. J Mater Sci: Mater Electron 32, 4290–4299 (2021). https://doi.org/10.1007/s10854-020-05172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05172-y

Navigation