Skip to main content
Log in

Applying multifunctional perovskite LaNiO3 as electrolyte and anode for low‐temperature solid oxide fuel cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, due to the unique advantage in ionic conductivity, semiconductor–ionic conductor composite (SIC) has been widely applied as electrolyte for solid oxide fuel cell (SOFC), and the suitable anode and cathode should be chosen to match the SIC electrolyte. Inspired by this ideology, the semiconductor lanthanum nitrate (LaNiO3) with perovskite structure was prepared by sol-gel method and then composed with ionic conductor yttrium-stabilized zirconia (YSZ) to form LaNiO3-YSZ SIC, which was applied as electrolyte membrane, simultaneously the Li2CO3–LaNiO3 composite and Ni0.8Co0.15Al0.05LiO2 (NCAL) were respectively utilized as anode and cathode for fuel cell construction. Through optimizing the electrolyte composition, such device based on LaNiO3-YSZ electrolyte and Li2CO3–LaNiO3 anode received a supreme performance of 505 mW/cm2 at 550 °C, and the maximum power density can also maintain at 350 mW/cm2 even as the temperature dropped to 475 °C. The excellent performance is attributed to the decent ionic conductivity of LaNiO3-YSZ electrolyte and the outstanding catalysis activity of electrodes. In addition, we have found that the addition of Li2CO3 component into anode can substantially enhance the cell performance. Our result demonstrates that the multifunctional LaNiO3 can be simultaneously applied as electrolyte and anode for low-temperature SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.M. Ormerod, Chem. Soc. Rev. 32(1), 17–28 (2002)

    Article  Google Scholar 

  2. A.B. Stambouli, E. Traversa, Renew. Sustain. Energy Rev. 6(5), 433–455 (2002)

    Article  CAS  Google Scholar 

  3. B.C.H. Steele, Solid State Ionics 129(1–4), 95–110 (2000)

    Article  CAS  Google Scholar 

  4. L. Malavasi, C.A.J. Fisher, M.S. Islam, Chem. Soc. Rev. 39(11), 4370–4387 (2010)

    Article  CAS  Google Scholar 

  5. N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Ceram. Int. 41(10), 15162–15169 (2015)

    Article  CAS  Google Scholar 

  6. J. Li, C. Wang, X. Wang, L. Bi, Electrochem. Commun. 112, 106672 ( (2020), )

    Article  CAS  Google Scholar 

  7. J.M. Ma, Z.T. Tao, H.N. Kou, M. Fronzi, L. Bi, Ceram. Int. 46, 4000–4005 ( (2020), )

    Article  CAS  Google Scholar 

  8. S.C. Singhal, Solid State Ionics 135(1–4), 305–313 (2000)

    Article  CAS  Google Scholar 

  9. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, PNAS 103(10), 3518–3521 (2006)

    Article  CAS  Google Scholar 

  10. B. Zhu, Y. Ma, X. Wang, R. Raza, H. Qin, L. Fan, Electrochem. Commun. 13, 225–227 (2011)

    Article  CAS  Google Scholar 

  11. E.D. Wachsman, K.T. Lee, Science 334(6058), 935–939 (2011)

    Article  CAS  Google Scholar 

  12. Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, Energy Environ. Sci. 9(5), 1602–1644 (2016)

    Article  CAS  Google Scholar 

  13. W. Zhang, Y.X. Cai, B.Y. Wang, C. Xia, W.J. Dong, J.J. Li, B. Zhu, Int. J. Hydrogen Energy 41(34), 15346–15353 (2016)

    Article  CAS  Google Scholar 

  14. C. Xia, Z. Qiao, C. Feng, J.S. Kim, B.Y. Wang, B. Zhu, Materials 11(1), 40 (2018)

    Article  Google Scholar 

  15. B.Y. Wang, Y. Wang, L.D. Fan, Y.X. Cai, C. Xia, Y.Y. Liu, R. Raza, P.A. Aken, H. Wang, B. Zhu, J. Mater. Chem. A 4(40), 15426–15436 (2016)

    Article  CAS  Google Scholar 

  16. S.U. Rehman, A. Shaur, R.H. Song, T.H. Lim, J.E. Hong, S.J. Park, S.B. Lee, J. Power Sources 429, 97–104 (2019)

    Article  CAS  Google Scholar 

  17. Y.L. Lee, J. Kleis, J. Rossmeisl, D. Morgan, Phys. Rev. B 80(22), 224101 (2009)

    Article  Google Scholar 

  18. L. Fan, P.-C. Su, J. Power Sources 306, 369–377 (2016)

    Article  CAS  Google Scholar 

  19. C. Xia, B.Y. Wang, Y. Ma, Y.X. Cai, M. Afzai, Y.Y. Liu, J. He, W.J. Dong, J.J. Li, B. Zhu, J. Power Sources 307, 270–279 (2016)

    Article  CAS  Google Scholar 

  20. Y. Chen, X.Y. Nie, B.Y. Wang, C. Xia, W.J. Dong, X.Y. Wang, H. Wang, B. Zhu, Catal. Today 355, 295–303 (2020)

    Article  CAS  Google Scholar 

  21. C. Xia, Y.Q. Mi, B.Y. Wang, B. Lin, G. Chen, B. Zhu, Nat. Commun. 10, 1707 (2019)

    Article  Google Scholar 

  22. G. Chen, W.K. Sun, Y.D. Luo, H.L. Liu, S.J. Geng, K. Yu, G.Q. Liu, Int. J. Hydrogen Energy 43(1), 417–425 (2018)

    Article  CAS  Google Scholar 

  23. T.W. Chiu, Y.T. Lin, I.F. Yen, H.H. Hsieh, S.F. Wang, Ferroelectrics 457(1), 105–110 (2013)

    Article  CAS  Google Scholar 

  24. B.Y. Wang, Y. Wang, L.D. Fan, Y.X. Cai, C. Xia, Y.Y. Liu, R. Raza, A.A. Peter, H. Wang, B. Zhu, J. Mater. Chem. A 4(40), 15426–15436 (2016)

    Article  CAS  Google Scholar 

  25. B.Y. Wang, S.S. Chen, W.J. Dong, X.Y. Wang, L.P. Shen, H. Wang, Int. J. Hydrogen Energy 43, 12847–12855 (2018)

    Article  CAS  Google Scholar 

  26. E. Bontempi, C. Garzella, S. Valetti, L.E. Depero, J. Eur. Ceram. Soc. 23(12), 2135–2142 (2003)

    Article  CAS  Google Scholar 

  27. N.S. Waluyo, B.K. Park, R.H. Song, S.B. Lee, T.H. Lim, S.J. Park, J.W. Lee, J. Korean Ceram. Soc. 52(5), 344–349 (2015)

    Article  CAS  Google Scholar 

  28. K. Liu, K.S. Ganesh, J.J. Nie, Z.L. He, C. Xia, W.J. Dong, X.Y. Wang, H. Wang, B.Y. Wang, ACS Sustain. Chem. Eng. 8(28), 10357–10368 (2020)

    Article  CAS  Google Scholar 

  29. X.Y. Nie, D. Zheng, Y. Chen, B.Y. Wang, C. Xia, W.J. Dong, X.Y. Wang, B. Zhu, Int. J. Hydrogen Energy 44, 31372–31385 (2019)

    Article  CAS  Google Scholar 

  30. O.H. Kwon, G.M. Choi, Solid State Ionics 177, 3057–3062 (2006)

    Article  CAS  Google Scholar 

  31. C. Xia, Y. Cai, B. Wang, M. Afzal, W. Zhang, A. Soltaninazarlou, B. Zhu, J. Power Sources 342, 779–786 (2017)

    Article  CAS  Google Scholar 

  32. X.D. Wang, Y. Ma, B. Zhu, Int. J. Hydrogen Energy 37, 19417–19425 (2012)

    Article  CAS  Google Scholar 

  33. X.D. Wang, Y. Ma, S.H. Li, A.H. Kashyout, B. Zhu, M. Muhammed, J. Power Sources 196, 2754–2758 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyuan Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Nie, J., Wang, K. et al. Applying multifunctional perovskite LaNiO3 as electrolyte and anode for low‐temperature solid oxide fuel cell. J Mater Sci: Mater Electron 32, 4196–4204 (2021). https://doi.org/10.1007/s10854-020-05164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05164-y

Navigation