Skip to main content
Log in

Enhanced capacitive behaviour of graphene nanoplatelets embedded epoxy nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the development of advanced polymer nanocomposite processability, high-quality and cost-efficiency plays a crucial role which combines mechanical robustness with functional electrochemical properties. In this study, we fabricated the epoxy/graphene nanocomposite (EGNC) with different wt% ratio of graphene nanoplatelets (GNPs). The EGNCs were fabricated through a solution mixing process and used it as an electrode to enhance electrochemical properties. The GNPs and EGNCs characterized using XRD, Raman spectroscopy, ATR FT-IR, and FE-SEM for the structural conformation and surface morphological study. The electrochemical analysis results show significant improvement in the specific capacitance in the EGNC samples as compared to the blank epoxy film. Specific capacitance 17.74 Fg−1 was recorded at 10 mVs−1 scan rate in 1.0 M KOH electrolyte solution for the 1.0 wt% EGNC film by cyclic voltammetry analysis. The Galvanostatic charge–discharge and Ragone plots also show mended results by the addition of GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Sankar, A. Nambi, V.N. Bhat, D. Sethy, K. Balasubramaniam, S. Das, M. Guha, R. Sundara, Waterproof flexible polymer-functionalized graphene-based piezoresistive strain sensor for structural health monitoring and wearable devices. ACS Omega. 5, 12682–12691 (2020)

    Article  CAS  Google Scholar 

  2. K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H.R. Choi, S. Baik, Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010)

    Article  CAS  Google Scholar 

  3. W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Sci. Technol. 63, 225–235 (2003)

    Article  CAS  Google Scholar 

  4. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl. Surf. Sci. 311, 602–608 (2014)

    Article  CAS  Google Scholar 

  5. I. Zaman, H.-C. Kuan, J. Dai, N. Kawashima, A. Michelmore, A. Sovi, S. Dong, L. Luonga, J. Ma, From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale. 4, 4578–4586 (2012)

    Article  CAS  Google Scholar 

  6. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surf. Sci. 317, 414–421 (2014)

    Article  CAS  Google Scholar 

  7. Q. Chen, Y. Wang, M. Zheng, H. Fang, X. Meng, Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response. J. Mater. Sci.: Mater. Electron. 29, 19757–19767 (2018)

    CAS  Google Scholar 

  8. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  CAS  Google Scholar 

  9. Q. Meng, J. Jin, R. Wang, H.-C. Kuan, J. Ma, N. Kawashima, A. Michelmore, S. Zhu, C.H. Wang, Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25(1–12), 125707 (2014)

    Article  Google Scholar 

  10. Q. Meng, H. Wu, Z. Zhao, S. Araby, S. Lu, J. Ma, Free-standing, flexible, electrically conductive epoxy/graphene composite films. Composites A 92, 42–50 (2017)

    Article  CAS  Google Scholar 

  11. B. Raval, A.K. Srivastav, S.K. Gupta, U. Kumar, S.K. Mahapatra, P.N. Gajjar, I. Banerjee, Synthesis of exfoliated multilayer graphene and itsputative interactions with SARS-CoV-2 virus investigated through computational studies. J. Biomol. Struct. Dyn. (2020). https://doi.org/10.1080/07391102.2020.1817788

    Article  Google Scholar 

  12. T. Li, T. Patel, I. Banerjee, R. Pearce-Hill, J. Gallop, L. Hao, A.K. Ray, Plasma treated graphene oxide films: structural and electrical studies. J. Mater. Sci. Mater. Electron. 26, 4810–4815 (2015)

    Article  CAS  Google Scholar 

  13. S.Y. Oh, S.H. Kim, Y.S. Chi, T.J. Kang, Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment. Appl. Surf. Sci. 258, 8837–8844 (2012)

    Article  CAS  Google Scholar 

  14. H. Alhumade, A. Yu, A. Elkamel, L. Simon, A. Abdala, Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym. Lett. 10, 1034–1046 (2016)

    Article  CAS  Google Scholar 

  15. S.G. Prolongo, A. Jimenez-Suarez, R. Moriche, A. Ureña, In situ processing of epoxy composites reinforced with graphene nanoplatelets. Composite Sci. Technol. 86, 185–191 (2013)

    Article  CAS  Google Scholar 

  16. M.A. Hussein, B.M. Abu-Zied, A.M. Asiri, Fabrication of EPYR/GNP/MWCNT carbon-based composite materials for promoted epoxy coating performance. RSC Adv. 8, 23555–23566 (2018)

    Article  CAS  Google Scholar 

  17. P. Maity, S.V. Kasisomayajula, V. Parameswaran, S. Basu, N. Gupta, Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Trans. Dielectr. Electr. Insul. 15, 63–72 (2008)

    Article  CAS  Google Scholar 

  18. S. Nikafshara, O. Zabihi, S. Hamidic, Y. Moradid, S. Barzegara, M. Ahmadi, M. Naebe, A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA. RSC Adv. 7, 8694–8701 (2017)

    Article  Google Scholar 

  19. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. (Willey, New York, 2001), pp. 1–343

    Google Scholar 

  20. W. Österle, A. Giovannozzi, T. Gradt, I. Häusler, A. Rossi, B. Wetzel, G. Zhang, A.I. Dmitriev, Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality. Tribol. Int. 90, 481–490 (2015)

    Article  Google Scholar 

  21. N.G. Saykar, R.K. Pilania, I. Banerjee, S.K. Mahapatra, Synthesis of NiO-Co3O4 Nano-sheets and its temperature dependent supercapacitive behaviour. J. Phys. D Appl. Phys. 51, 475501 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. D. Sahare or I. Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raval, B., Sahare, P.D., Mahapatra, S.K. et al. Enhanced capacitive behaviour of graphene nanoplatelets embedded epoxy nanocomposite. J Mater Sci: Mater Electron 32, 4034–4044 (2021). https://doi.org/10.1007/s10854-020-05145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05145-1

Navigation