Skip to main content

Advertisement

Log in

NaInX2 (X = S, Se) layered materials for energy harvesting applications: first-principles insights into optoelectronic and thermoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent times, layered chalcogenide semiconductors have attracted great interest in energy harvesting device applications. In the present study, the structural, electronic, optical and thermoelectric properties of two isostructural chalcogenide materials, NaInS2 and NaInSe2 with hexagonal symmetry (R-3m) have been studied using the first principles method. A very good agreement has been found between our results with the available experimental and theoretical ones. The studied materials are semiconducting in nature as confirmed from the electronic band structure and optical properties. The strong hybridizations among s orbitals of Na, In and Se atoms push the bottom of the conduction band downward resulting in a narrower band gap of NaInSe2 compared to that of NaInS2 compound. Different optical (dielectric function, photoconductivity, absorption coefficient, reflectivity, refractive index and loss function) and thermoelectric (Seebeck coefficient, electrical conductivity, power factor and thermal conductivity) properties of NaInX2 (X = S, Se) have been studied in detail for the first time. It is found that all these properties are significantly anisotropic due to the strongly layered structure of NaInX2 (X = S, Se). Strong optical absorption with sharp peaks is found in the far visible to mid ultraviolet (UV) regions while the reflectivity is low in the UV region for both the compounds. Such features indicate feasibility of applications in optoelectronic sector. The calculated thermoelectric power factors at 1000 K for NaInS2 and NaInSe2 along a-axis are found to be 151.5 μW/cmK2 and 154 μW/cmK2, respectively and the corresponding ZT values are ~ 0.70. The obtained thermal conductivity along a-axis for both compounds is high (~ 22 W/mK).This suggests that the reduction of such high thermal conductivity is important to achieve higher ZT values of the NaInX2-(X = S, Se) compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on a reasonable request.

References

  1. K. Fukuzaki, S. Kohiki, S. Matsushima, M. Oku, T. Hideshima, T. Watanabe, S. Takahashi, H. Shimooka, Preparation and characterization of NaInO2 and NaInS2. J. Mater. Chem. 10, 779–782 (2000). https://doi.org/10.1039/A908505J

    Article  CAS  Google Scholar 

  2. R. Hoppe, W. Lidecke, F.-C. Frorath, ZurKenntnis von NalnS2 und NalnSe2. Zeitschriftfüranorganische und allgemeineChemie. 309, 49–54 (1961). https://doi.org/10.1002/zaac.19613090105

    Article  CAS  Google Scholar 

  3. N. Takahashi, H. Ito, A. Miura, N.C. Rosero-Navarro, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, M. Nagao, S. Watauchi, I. Tanaka, K. Tadanaga, Synthesis, crystal structure and optical absorption of NaInS2-xSex. J. Alloys Compd. 750, 409–413 (2018). https://doi.org/10.1016/j.jallcom.2018.03.407

    Article  CAS  Google Scholar 

  4. S. Wagner, J.L. Shay, P. Migliorato, H.M. Kasper, CuInSe2/CdSheterojunction photovoltaic detectors. Appl. Phys. Lett. 25, 434–435 (1974). https://doi.org/10.1063/1.1655537

    Article  CAS  Google Scholar 

  5. A. Kudo, A. Nagane, I. Tsuji, H. Kato, H2 Evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst nains2 with a layered structure. Chem. Lett. 31, 882–883 (2002). https://doi.org/10.1246/cl.2002.882

    Article  Google Scholar 

  6. P. Hu, C.K. Ngaw, Y.Y. Tay, S. Cao, J. Barber, T.T.Y. Tan, S.C.J. Loo, A “uniform” heterogeneous photocatalyst: integrated p–n type CuInS2/NaInS2nanosheets by partial ion exchange reaction for efficient H2 evolution. Chem. Commun. 51, 9381–9384 (2015). https://doi.org/10.1039/C5CC02237A

    Article  CAS  Google Scholar 

  7. Z. Mei, S. Ouyang, D.-M. Tang, T. Kako, D. Golberg, J. Ye, An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. Dalton Trans. 42, 2687–2690 (2013). https://doi.org/10.1039/C2DT32271D

    Article  CAS  Google Scholar 

  8. A. Miura, T. Oshima, K. Maeda, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Meng, X.-D. Wen, M. Nagao, M. Higuchi, K. Tadanaga, Synthesis, structure and photocatalytic activity of layered LaOInS2. J. Mater. Chem. A 5, 14270–14277 (2017). https://doi.org/10.1039/C7TA04440B

    Article  CAS  Google Scholar 

  9. R. Saniz, J. Bekaert, B. Partoens, D. Lamoen, Structural and electronic properties of defects at grain boundaries in CuInSe2. Phys. Chem. Chem. Phys. 19, 14770–14780 (2017). https://doi.org/10.1039/C7CP02033C

    Article  CAS  Google Scholar 

  10. M.M. Hossain, M.A. Ali, M.M. Uddin, M.A. Hossain, M. Rasadujjaman, S.H. Naqib, M. Nagao, S. Watauchi, I. Tanaka, Influence of Se doping in recently synthesized NaInS2-xSex solid solutions for potential thermo-mechanical applications studied via first-principles method [Cond-Mat]. (2020). http://arxiv.org/abs/2010.01796. Accessed 9 Oct 2020.

  11. M.S. Yaseen, G. Murtaza, G. Murtaza, Theoretical investigation of the structural stabilities, optoelectronic and thermoelectric properties of ternary alloys NaInY2 (Y = S, Se and Te) through modified Becke-Johnson exchange potential. Int. J. Mod. Phys. B. 34, 2050133 (2020). https://doi.org/10.1142/S0217979220501337

    Article  CAS  Google Scholar 

  12. P. Barua, M.M. Hossain, M.A. Ali, M.M. Uddin, S.H. Naqib, A.K.M.A. Islam, Effects of transition metals on physical properties of M2BC (M = V, Nb, Mo and Ta): a DFT calculation. J. Alloys Compd. 770, 523–534 (2019). https://doi.org/10.1016/j.jallcom.2018.08.155

    Article  CAS  Google Scholar 

  13. E. Haque, M.A. Hossain, First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn. Results Phys. 10, 458–465 (2018). https://doi.org/10.1016/j.rinp.2018.06.053

    Article  Google Scholar 

  14. E. Haque, M.A. Hossain, First-principles study of mechanical, thermodynamic, transport and superconducting properties of Sr3SnO. J. Alloys Compd. 730, 279–283 (2018). https://doi.org/10.1016/j.jallcom.2017.09.299

    Article  CAS  Google Scholar 

  15. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014). https://doi.org/10.1038/nature13184

    Article  CAS  Google Scholar 

  16. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  17. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. ZeitschriftFürKristallographie - Crystalline Materials. 220, 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  18. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  20. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  21. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  22. T.H. Fischer, J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992). https://doi.org/10.1021/j100203a036

    Article  CAS  Google Scholar 

  23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks, L. Marks, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Techn. Universitat, 2019. https://www.scholars.northwestern.edu/en/publications/wien2k-an-augmented-plane-wave-plus-local-orbitals-program-for-ca. Accessed 23 Sept 2020

  24. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  Google Scholar 

  25. G.K.H. Madsen, D.J. Singh, B. TraP, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  26. K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997). https://doi.org/10.1103/PhysRevLett.78.4063

    Article  CAS  Google Scholar 

  27. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S.D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  28. M. Irfan, S. Azam, S. Hussain, S.A. Khan, M. Sohail, M. Ahmad, S. Goumri-Said, Enhanced thermoelectric properties of ASbO3 due to decreased band gap through modified beckejohnson potential scheme. J. Phys. Chem. Solids. 119, 85–93 (2018). https://doi.org/10.1016/j.jpcs.2018.03.010

    Article  CAS  Google Scholar 

  29. E. Haque, M.A. Hossain, Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X=Cl, Br) and its impact on thermoelectric performance. J. Alloys Compd. 748, 63–72 (2018). https://doi.org/10.1016/j.jallcom.2018.03.137

    Article  CAS  Google Scholar 

  30. S. Sharma, B. Singh, P. Kumar, A comparative study of thermoelectric properties of CuGaTe2 by using PBE and MBJ potentials. AIP Conf. Proc. 1942, 140036 (2018). https://doi.org/10.1063/1.5029167

    Article  CAS  Google Scholar 

  31. M.A. Ali, M. Anwar Hossain, M.A. Rayhan, M.M. Hossain, M.M. Uddin, M. Roknuzzaman, K. Ostrikov, A.K.M.A. Islam, S.H. Naqib, First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4chalcogenide. J. Alloys Compd. 781, 37–46 (2019). https://doi.org/10.1016/j.jallcom.2018.12.035

    Article  CAS  Google Scholar 

  32. I.S. Khare, N.J. Szymanski, D. Gall, R.E. Irving, Electronic, optical, and thermoelectric properties of sodium pnictogenchalcogenides: a first principles study. Comput. Mater. Sci. 183, 109818 (2020). https://doi.org/10.1016/j.commatsci.2020.109818

    Article  CAS  Google Scholar 

  33. M. Roknuzzaman, M.A. Hadi, M.A. Ali, M.M. Hossain, N. Jahan, M.M. Uddin, J.A. Alarco, K. Ostrikov, First hafnium-based MAX phase in the 312 family, Hf3AlC2: a first-principles study. J. Alloys Compd. 727, 616–626 (2017). https://doi.org/10.1016/j.jallcom.2017.08.151

    Article  CAS  Google Scholar 

  34. M.T. Nasir, M.A. Hadi, M.A. Rayhan, M.A. Ali, M.M. Hossain, M. Roknuzzaman, S.H. Naqib, A.K.M.A. Islam, M.M. Uddin, K. Ostrikov, First-principles study of superconducting ScRhP and ScIrPpnictides. Physica Status Solidi (B). 254, 1700336 (2017). https://doi.org/10.1002/pssb.201700336

    Article  CAS  Google Scholar 

  35. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science (2017). https://doi.org/10.1126/science.aak9997

    Article  Google Scholar 

  36. A.T. Burkov, A. Heinrich, M.V. Vedernikov, Anisotropic thermoelectric materials, properties and applications. AIP Conf. Proc. 316, 76–80 (1994). https://doi.org/10.1063/1.46838

    Article  Google Scholar 

  37. C. Jacoboni, Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions (Springer-Verlag, Berlin Heidelberg, 2010).

    Book  Google Scholar 

  38. R.L. González-Romero, A. Antonelli, Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime. Phys. Chem. Chem. Phys. 19, 3010–3018 (2017). https://doi.org/10.1039/C6CP08026J

    Article  Google Scholar 

  39. Z. Gao, G. Liu, J. Ren, High thermoelectric performance in two-dimensional tellurium: an Ab initio study. ACS Appl. Mater. Interfaces. 10, 40702–40709 (2018). https://doi.org/10.1021/acsami.8b11836

    Article  CAS  Google Scholar 

  40. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004). https://doi.org/10.1126/science.1092963

    Article  CAS  Google Scholar 

  41. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). https://doi.org/10.1038/nature11439

    Article  CAS  Google Scholar 

  42. C.C. Kim, J.W. Garland, H. Abad, P.M. Raccah, Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation. Phys. Rev. B 45, 11749–11767 (1992). https://doi.org/10.1103/PhysRevB.45.11749

    Article  CAS  Google Scholar 

  43. R.L. de Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. JOSA. 12, 547–557 (1926). https://doi.org/10.1364/JOSA.12.000547

    Article  CAS  Google Scholar 

  44. E. Haque, M.A. Hossain, Structural, elastic, optoelectronic and transport calculations of Sr3SnO under pressure. Mater. Sci. Semicond. Process. 83, 192–200 (2018). https://doi.org/10.1016/j.mssp.2018.04.037

    Article  CAS  Google Scholar 

  45. W. Khan, J. Minar, Theoretical study on optical and thermoelectric properties of the direct band gap α/β-Ca2CdAs2pnictide semiconductors. RSC Adv. 4, 46791–46799 (2014). https://doi.org/10.1039/C4RA06700B

    Article  CAS  Google Scholar 

  46. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  47. J. Islam, A.K.M.A. Hossain, Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3perovskite under pressure. Sci. Rep. 10, 14391 (2020). https://doi.org/10.1038/s41598-020-71223-3

    Article  CAS  Google Scholar 

  48. C.M.I. Okoye, Optical properties of the antiperovskite superconductor MgCNi3. J. Phys. 15, 833–841 (2003). https://doi.org/10.1088/0953-8984/15/6/310

    Article  CAS  Google Scholar 

  49. A. Hossain, M.K.R. Khan, M.S.I. Sarker, A systematic computational study of electronic, mechanical, and optical properties of Fe1-xCox alloy. J. Phys. Commun. 4, 045003 (2020). https://doi.org/10.1088/2399-6528/ab843b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Physics, Chittagong University of Engineering & Technology (CUET), Chattogram-4349, Bangladesh, for providing the computing facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Hossain, M. A. Hossain or S. H. Naqib.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.M., Hossain, M.A., Moon, S.A. et al. NaInX2 (X = S, Se) layered materials for energy harvesting applications: first-principles insights into optoelectronic and thermoelectric properties. J Mater Sci: Mater Electron 32, 3878–3893 (2021). https://doi.org/10.1007/s10854-020-05131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05131-7

Navigation