Skip to main content
Log in

Optoelectronic and Thermoelectric Properties of the Perovskites: NaSnX3 (X = Br or I)—A DFT Study

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This paper explores the photovoltaic and thermoelectric properties of composites consisting of NaSnX3 (X = Br or I). The study uses density functional theory in conjunction with the Boltzmann Transport Theory. Initially, the structural, electronic, and optical properties of the materials are inspected using the generalized gradient approximation (GGA) based on the Perdew–Burke–Ernzerhof approximation (GGA-PBE) with consideration of the cross-correlation potential. The findings reveal that the studied compounds exhibit a p-type semiconductor character along with intriguing optical properties. Afterward, the thermoelectric properties of the materials are examined and discussed in the second part of the study. This analysis includes the Seebeck coefficient, electrical and thermal conductivities, the figure of merit, and the power factor. It is observed that the Seebeck coefficient demonstrates positive values, confirming the p-type semiconducting properties of the two materials under study. Additionally, these compounds exhibit significant values of the figure of merit (ZT) values when compared to existing thermoelectric materials. Especially, the large ZT values are achieved at both low and high-temperature ranges. Generally, these materials hold potential for applications in photovoltaic and/or thermoelectric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Tian, R. Yang, Z. Pan, X. Su, S. Li, P. Wang, X. Huang, Anisotropic reed-stem-derived hierarchical porous biochars supported paraffin wax for efficient solar-thermal energy conversion and storage. J. Energy Storage 56, 106153 (2022). https://doi.org/10.1016/j.est.2022.106153

    Article  Google Scholar 

  2. L. Evangelisti, R. De Lieto Vollaro, F. Asdrubali, Latest advances on solar thermal collectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318 (2019). https://doi.org/10.1016/j.rser.2019.109318

    Article  Google Scholar 

  3. S.A. Memon, R.N. Patel, An overview of optimization techniques used for sizing of hybrid renewable energy systems. Renew. Energy Focus 39, 1–26 (2021). https://doi.org/10.1016/j.ref.2021.07.007

    Article  Google Scholar 

  4. R. Chargui, N. Bechir, B. Tashtoush, A novel hybrid solar water heater system integrated with thermoelectric generators: experimental and numerical analysis. J. Clean. Prod. 368, 133119 (2022). https://doi.org/10.1016/j.jclepro.2022.133119

    Article  CAS  Google Scholar 

  5. A. Habchi, B. Hartiti, H. Labrim, S. Fadili, A. Benyoussef, N. Belouaggadia, A. Faddouli, M. Benaissa, E. Ntsoenzok, H. EZ-Zahraouy, Performance study of a new smart hybrid parabolic trough collector system integrated with hybrid tubular thermoelectric generator. Appl. Therm. Eng. 192, 116656 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116656

    Article  Google Scholar 

  6. A. Habchi, B. Hartiti, H. Labrim, S. Fadili, A. Benyoussef, N. Belouaggadia, A. Faddouli, M. Ertuğrul, M. Benaissa, E. Ntsoenzok, Feasibility and thermal/electrical performance study of two smart hybrid systems combining parabolic trough collector with tubular thermoelectric generator. Energy Rep. 7, 1539–1559 (2021). https://doi.org/10.1016/j.egyr.2021.03.002

    Article  Google Scholar 

  7. A. Faddouli, H. Labrim, S. Fadili, A. Habchi, B. Hartiti, M. Benaissa, M. Hajji, H. EZ-Zahraouy, E. Ntsoenzok, A. Benyoussef, Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system. Renew. Energy. 147(Part 1), 2077–2090 (2020). https://doi.org/10.1016/j.renene.2019.09.130

    Article  Google Scholar 

  8. M. Hajji, H. Labrim, M. Benaissa, A. Laazizi, H. Ez-Zahraouy, E. Ntsoenzok, J. Meot, A. Benyoussef, Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Conv. Manag. 136, 184–191 (2017). https://doi.org/10.1016/j.enconman.2016.12.088

    Article  Google Scholar 

  9. Y. Selmani, H. Labrim, M. Mouatassime, L. Bahmad, Structural, optoelectronic and thermoelectric properties of Cs-based fluoroperovskites CsMF3 (M = Ge, Sn or Pb). Mater. Sci. Semicond. Process. 152, 107053 (2022). https://doi.org/10.1016/j.mssp.2022.107053

    Article  CAS  Google Scholar 

  10. X. Wang, I. Veremchuk, U. Burkhardt, Thermoelectric stability of Eu- and Na-substituted PbTe. J. Mater. Chem. C 6, 9482–9493 (2018)

    Article  CAS  Google Scholar 

  11. J. Shuai, X.J. Tan, Q. Guo et al., Enhanced thermoelectric performance through crystal field engineering in transition metal-doped GeTe. Mater. Today Phys. 9, 100094 (2019)

    Article  Google Scholar 

  12. X. Shi, T. Zhao, X. Zhang et al., Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping. Adv. Mater. 31, e1903387 (2019)

    Article  PubMed  Google Scholar 

  13. G. Tan, C.C. Stoumpos, S. Wang, Subtle roles of sb and S in regulating the thermoelectric properties of n-type PbTe to high performance. Adv. Energy Mater. 7, 1700099 (2017)

    Article  Google Scholar 

  14. D.K. Bhat, U.S. Shenoy, Enhanced thermoelectric performance of bulk tin telluride: synergistic effect of calcium and indium co-doping. Mater. Today Phys. 4, 12–18 (2018)

    Article  Google Scholar 

  15. M. Li, M. Hong, X. Tang et al., Crystal symmetry induced structure and bonding manipulation boosting thermoelectric performance of GeTe. Nano Energy 73, 104740 (2020). https://doi.org/10.1016/j.nanoen.2020.104740

    Article  CAS  Google Scholar 

  16. G. Xie, Z. Li, T. Luo et al., Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104395

    Article  Google Scholar 

  17. X. Qiu, L.N. Austin, P.A. Muscarella, J.S. Dyck, C. Burda, Nanostructured Bi2Se3 films and their thermoelectric transport properties. Angew. Chem. Int. Ed 45, 5656–5659 (2006)

    Article  CAS  Google Scholar 

  18. Y.-K. Zhu, J. Guo, L. Chen, S.-W. Gu, Y.-X. Zhang, Q. Shan, J. Feng, Z.-H. Ge, Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chem. Eng. J. 407, 126407 (2021)

    Article  CAS  Google Scholar 

  19. Q. Mahmood, M. Hassan, S.H.A. Ahmad, A. Shahid, A. Laref, Study of optoelectronic and thermoelectric properties of BaSiO3 perovskite under moderate pressure for energy renewable devices applications. J. Phys. Chem. Solid 120, 87–95 (2018)

    Article  CAS  Google Scholar 

  20. Q. Mahmood, B.U. Haq, M. Yaseen, S.M. Ramay, M.G.B. Ashiq, A. Mahmood, The first-principle study of mechanical, optical and thermoelectric properties of SnZrO3 and SnHfO3 for renewable energy applications. Solid State Commun. 292, 17–23 (2019)

    Article  CAS  Google Scholar 

  21. Y. Selmani, H. Labrim, M. Mouatassime, L. Bahmad, Structural, optoelectronic and thermoelectric properties of Cs-based fluoroperovskites CsMF3 (M = Ge, Sn or Pb). Mater. Sci. Semiconduct. Process. 152, 107053 (2022)

    Article  CAS  Google Scholar 

  22. R. Sharma, A. Dey, S.A. Dar, V. Srivastava, A DFT investigation of CsMgX3 (X = cl, br) halide perovskites: electronic, thermoelectric and optical properties. Comput. Theor. Chem. 1204, 113415 (2021)

    Article  CAS  Google Scholar 

  23. G. Kadim, R. Masrour, Thermoelectric magneto-optic properties and magnetocaloric effect of PbS doped with Mn2+ ions. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02677-x

    Article  Google Scholar 

  24. R.O. Agbaoye, J.O. Akinlami, T.A. Afolabi et al., Unraveling the stable phase, high absorption coefficient, optical and mechanical properties of hybrid perovskite CH3NH3PbxMg1–xI3: density functional approach. J. Inorg. Organomet. Polym. 30, 299–309 (2020). https://doi.org/10.1007/s10904-019-01187-z

    Article  CAS  Google Scholar 

  25. F.H.P. Lopes, L.F.G. Noleto, V.E.M. Vieira et al., Experimental and theoretical correlation of modulated architectures of β-Ag2MoO4 microcrystals: effect of different synthesis routes on the morphology, optical, colorimetric, and photocatalytic properties. J. Inorg. Organomet. Polym. 33, 424–450 (2023). https://doi.org/10.1007/s10904-022-02509-4

    Article  CAS  Google Scholar 

  26. S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021)

    Article  CAS  Google Scholar 

  27. A. Ait Raiss, Y. Sbai, L. Bahmad, A. Benyoussef, Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. J. Magn. Magn. Mater. 385, 295–301 (2015)

    Article  CAS  Google Scholar 

  28. S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X = pd, ni or pt). Solid State Commun. 331, 114292 (2021)

    Article  CAS  Google Scholar 

  29. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Half-metallicity and magnetism in the full heusler Alloy Fe2MnSn with L21 and XA stability ordering phases. J. Low Temp. Phys. 202(3–4), 343–359 (2021)

    Article  CAS  Google Scholar 

  30. S. Idrissi, L. Bahmad, R. Khalladi et al., Phase diagrams, electronic and magnetic properties of the quaternary Heusler alloy NbRhCrAl. Chin. J. Phys. 60, 549–563 (2019)

    Article  CAS  Google Scholar 

  31. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Critical magnetic behavior of the rare earth-based alloy GdN: Monte Carlo simulations and density functional theory method. J. Mater. Eng. Perform. 29(11), 7361–7368 (2020)

    Article  CAS  Google Scholar 

  32. A. Mebed, M. Mushtaq, I. Muhammad, I.U.N. Lone, S. Al-Qaisi, N. Algethami, E.F. El-Shamy, A. Laref, N.M. Al-Hosiny, Structure, half-metallic and magnetic properties of bulk and (001) surface of Rb2XMoO6 (X = Cr, Sc) double perovskites: a DFT + U study. Phys. Scr. 98, 015807 (2022)

    Article  Google Scholar 

  33. M. Khuili, M. Bounbaa, N. Fazouan, H.A. Elmakarim, Y. Sadiki, S. Al-Qaisi, I. Allaoui, E. Maskar, E. Chahid, K. Maher, E. Abba, First-principles study of structural, elastic, optoelectronic and thermoelectric properties of B-site-ordered quadruple perovskite Ba4Bi3NaO12. J. Solid State Chem. 322, 123955 (2023)

    Article  CAS  Google Scholar 

  34. H. Albalawi et al., Study of lead-free vacancy ordered double perovskites Cs2TeX6 (X = cl, br, I) for solar cells, and renewable energy. Phys. Scr. 97, 095801 (2022)

    Article  Google Scholar 

  35. S. Al-Qaisi, R. Ahmed, B. Ul Haq, D.P. Rai, S.A. Tahir, A comprehensive first-principles computational study on the physical properties of lutetium aluminum perovskite LuAlO3. Mater. Chem. Phys. 250, 123148 (2020)

    Article  CAS  Google Scholar 

  36. M. Belabbas, N. Marbouh, O. Arbouche, A. Hussain, Optoelectronic properties of the novel perovskite materials LiPb(Cl:Br:I)3 for enhanced hydrogen production by visible photo-catalytic activity: Theoretical prediction based on empirical formulae and DFT. Int. J. Hydrog. Energy 45(58), 33466–33477 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.066

    Article  CAS  Google Scholar 

  37. D. Koller, F. Tran, B. Peter, Phys. Rev. B 85(15), 155109 (2012)

    Article  Google Scholar 

  38. A.E. Carlsson, J.W. Wilkins, Phys. Rev. B 29(10), 5836–5839 (1984)

    Article  CAS  Google Scholar 

  39. K. Schwarz, P. Blaha, Mater. Sci. 28(2), 259–273 (2003)

    CAS  Google Scholar 

  40. J.P. Perdew, J.A. Chevary et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  CAS  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. H. Absike, H. Labrim, B. Hartiti, H. Ez-Zahraouy, Spin. 10(2), 2050014 (2020)

    Article  Google Scholar 

  43. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  44. D.J. Cirilo-Lombardo, Semiconductor dielectric function, excitons, and the Penn model. Phil. Mag. 95(9), 1007–1015 (2015). https://doi.org/10.1080/14786435.2015.1015468

    Article  CAS  Google Scholar 

  45. S. Al-Qaisi, M. Mushtaq, S. Alomairy, T.V. Vu, H. Rached, B. Ul Haq, Q. Mahmood, M.S. Al-Buriahi, Mater. Sci. Semicond. Process. 150, 106947 (2022)

    Article  CAS  Google Scholar 

  46. S. Al-Qaisi, A.M. Mebed, M. Mushtaq, D.P. Rai, T.A. Alrebdi, R.A. Sheikh, H. Rached, R. Ahmed, M. Faizan, S. Bouzgarrou, M.A. Javed, J. Comput. Chem. (2023). https://doi.org/10.1002/jcc.27119

    Article  PubMed  Google Scholar 

  47. GM Mustafa, M Hassan, NM Aloufi, S Saba, S Al-Qaisi, Q Mahmood, H Albalawi, S Bouzgarrou, HH Somaily, A Mera, Half metallic ferroamgnetism, and transport properties of vacancy ordered double perovskites Rb2(Os/Ir)X6 (X = Cl, Br) for spintronic applications, Ceramics International, 48(16) 2022, 23460–23467, Doi: 10.1016/j.ceramint.2022.04.341.

    Article  CAS  Google Scholar 

  48. S. Al-Qaisi, M. Mushtaq, J.S. Alzahrani, H. Alkhaldi, Z.A. Alrowaili, H. Rached, B. Ul Haq, Q. Mahmood, M.S. Al-Buriahi, M. Morsi, First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6. Micro Nanostruct. 170, 207397 (2022). https://doi.org/10.1016/j.micrna.2022.207397

    Article  CAS  Google Scholar 

Download references

Funding

No fundings are received for this work.

Author information

Authors and Affiliations

Authors

Contributions

HL and AJ prepared the figures. BJ, LL and LB supervised the project and revised the draft of the manuscript. SB and YS wrote the main manuscript. All authors reviewed and contributed to the manuscript.

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrim, H., Jabar, A., Laanab, L. et al. Optoelectronic and Thermoelectric Properties of the Perovskites: NaSnX3 (X = Br or I)—A DFT Study. J Inorg Organomet Polym 33, 3049–3059 (2023). https://doi.org/10.1007/s10904-023-02788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02788-5

Keywords

Navigation