Skip to main content
Log in

Impact of sodium oxide, sulfide, and fluoride-doped vanadium phosphate glasses on the thermoelectric power and electrical properties: structure analysis and conduction mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Four glasses of the (13.5%X– 32.5%V2O5–54%P2O5) mol%, X = Na2O, Na2S, and NaF, and (13.5% Na2S – 32.5%V2S5–54%P2S5) mol% were prepared. DSC, density, molar volume, XRD, thermoelectric power, and glass transport properties of the prepared glasses were reported. Density was found to increase with decreasing the molar volume, Vm, of glasses containing sulfur. Replacing oxygen with sulfur results in less number of bridging oxygen; this decrease leads to less compactness and molar volume increase of the host network. Thermoelectric power (S) of present samples was reported and the fraction C of reduced transition metal ions (C = V4+/Vtotal or V3+/Vtotal ) was calculated. Moreover, the conductivity data temperature dependence has been studied in two distinct polaronic models. Above θD/2 (high temperature region), the conductivity data are compatible with Mott SPH model between the nearest neighbors, but in the intermediate temperature extent, the appropriate model was Greaves VRH model. Dc conductivity values have a positive relation with C results calculated from thermoelectric power. The dc conductivity of the formed sulfur-containing glasses is enhanced owing to the increase of V4+–V5+ or V3+–V4+ ion pairs as sulfur worked as a reducing agent, which resulted in reduction of the vanadium ions from high valence (V4+ and/or V5+) to low valence states (V3+ and/or V4+). From inspecting the conduction mechanism nature and type, the current work displayed was proved to be in accord with non-adiabatic case of SPH. The hopping carrier mobility is very small in order of 10− 5 cm2 V− 1 s− 1 at 393 K satisfying the localized condition for hopping electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Saddeek, L.A. Latif, Effect of TeO2 on the elastic moduli of sodium borate glass. Physica B 348, 475–484 (2004)

    Article  CAS  Google Scholar 

  2. N. Elalaily, A. Zahran, O. Sallam, F.E. Eldin, Structure and electrical conductivity of γ-irradiated lead–phosphate glass containing MoO 3. Appl. Phys. A 125, 128 (2019)

    Article  Google Scholar 

  3. Y. Yan, B. Li, W. Guo, H. Pang, H. Xue, Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 329, 148–169 (2016)

    Article  CAS  Google Scholar 

  4. B. Sujatha, R. Viswanatha, H. Nagabushana, C.N. Reddy, Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions. Journal of materials research and technology 6, 7–12 (2017)

    Article  CAS  Google Scholar 

  5. L. McDonald, C. Siligardi, M. Vacchi, A. Zieser, M. Affatigato, Tellurium Vanadate Glasses: V (4+) colorimetric Measure and Its Effect on Conductivity. Frontiers in Materials 2020, 7

  6. J.E. Tsuchida, F.A. Ferri, P.S. Pizani, A.C.M. Rodrigues, S. Kundu, J.F. Schneider, E.D. Zanotto, Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses. Physical Chemistry Chemical Physics 19, 6594–6600 (2017)

    Article  CAS  Google Scholar 

  7. H.M.M. Moawad, H. Jain, R. El-Mallawany, DC conductivity of silver vanadium tellurite glasses. J. Phys. Chem. Solids 70, 224–233 (2009)

    Article  CAS  Google Scholar 

  8. R.J. Barczynski, L. Murawski, Mixed electronic–ionic conductivity in transition metal oxide glasses containing alkaline ions. Journal of Non-Crystalline Solids 307–310, 1055–1059 (2002)

    Article  Google Scholar 

  9. R.J. Barczyński, P. Król, L. Murawski, Ac and dc conductivities in V2O5–P2O5 glasses containing alkaline ions. J. Non-Cryst. Solids 356, 1965–1967 (2010)

    Article  Google Scholar 

  10. M. Saad, W. Stambouli, N. Sdiri, H. Elhouichet, Effect of mixed sodium and vanadium on the electric and dielectric properties of zinc phosphate glass. Mater. Res. Bull. 89, 224–231 (2017)

    Article  CAS  Google Scholar 

  11. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses. J. Alloy. Compd. 590, 380–387 (2014)

    Article  CAS  Google Scholar 

  12. C. Kalai, M. Kharroubi, L. Gacem, S. Balme, A. Belbel, F. Lalam, Effect of Transition-Metal Ions (Ni2+, Cu2 + and Co2+) on the Electric and Dielectric Properties of Zinc Sodium Phosphate. Glass Phys. Chem 45, 503–512 (2019)

    Article  CAS  Google Scholar 

  13. Y. Ledemi, M. El-Amraoui, L. Calvez, X.-H. Zhang, B. Bureau, Y. Messaddeq In Colorless chalco-halide Ga2S3-GeS2-CsCl glasses as new optical material, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII, International Society for Optics and Photonics: 2013; p 884704

  14. M. Dongol, A. Elhady, M. Ebied, A. Abuelwafa, Impact of sulfur content on structural and optical properties of Ge20Se80 – xSx chalcogenide glasses thin films. Opt. Mater. 78, 266–272 (2018)

    Article  CAS  Google Scholar 

  15. Y. Startsev, A. Pronkin, I. Sokolov, I.V. Murin, Electrical conductivity and structure of glasses in the Na2O-Na2S-P2O5 and Na2S-P2S5 systems. Glass Physics and Chemistry 2011, 37

  16. M. El-Desoky, A. Hajry, M. Tokunaga, T. Nishida, M. Hassaan Effect of Sulfur Addition on the Redox State of Iron in Iron Phosphate Glasses: Proceedings of the 27th International Conference on the Applications of the Mössbauer Effect (ICAME 2003) Muscat, Oman, 21–25 September, 2003 (Guest Editors: M. E. Elzain, A. A. Yousif, A. D. Al Rawas and A. M. Gismelseed). Hyperfine Interactions 2004, 156

  17. B.V.R. Chowdari, K.F. Mok, J.M. Xie, R. Gopalakrishnan, Spectroscopic and electrical studies of silver sulfophosphate glasses. J. Non-Cryst. Solids 160, 73–81 (1993)

    Article  CAS  Google Scholar 

  18. M.M. El-Desoky, A.M. Al-Syadi, M.S. Al-Assiri, H.M. Hassan, A. Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses. J. Mater. Sci.: Mater. Electron. 29, 968–977 (2018)

    CAS  Google Scholar 

  19. Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Advanced Science 4, 1600275 (2017)

    Article  Google Scholar 

  20. S.R. Keshri, V.V. Bodewad, A.A. Jagtap, N. Nasani, S. Balaji, K. Annapurna, A.R. Allu, Influence of NaF on the ionic conductivity of sodium aluminophosphate glass electrolytes. Mater. Lett. 271, 127763 (2020)

    Article  CAS  Google Scholar 

  21. I.A. Sokolov, V.N. Naraev, A.A. Pronkin, Effect of Fluorine Ion on the Electrical Properties of Glasses in the Na2O–P2O5 System. Glass Phys. Chem 26, 588–593 (2000)

    Article  CAS  Google Scholar 

  22. Q.H. Le, C. Calahoo, Y. Xia, J. Buchheim, C.B. Bragatto, L. Wondraczek, Optimization of electrical conductivity in the Na2O-P2O5‐AlF3‐SO3 glass system. Journal of the American Ceramic Society 2020

  23. W. Xu, C. Qin, S. Zhang, H. Liang, W. Lei, Z. Luo, A. Lu, Thermal, structural and electrical properties of fluorine-doped Li3. 6Al0. 8Ti4. 0P7. 6O30-x/2Fx (x = 0, 0.5, 1, 2) glass-ceramic electrolytes. Journal of Alloys and Compounds 853, 157191

  24. Z. Wang, J. Liu, Z. Du, H. Tao, Y. Yue, Enhancing Na-ion storage in Na 3 V 2 (PO 4) 3/C cathodes for sodium ion batteries through Br and N co-doping. Inorganic Chemistry Frontiers 7, 1289–1297 (2020)

    Article  CAS  Google Scholar 

  25. M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured NaTi 2 (PO 4) 3 for sustainable energy storage. Nano-Micro Letters 11, 44 (2019)

    Article  CAS  Google Scholar 

  26. S. Yu, Z. Liu, H. Tempel, H. Kungl, R.-A. Eichel, Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries. Journal of Materials Chemistry A 6, 18304–18317 (2018)

    Article  CAS  Google Scholar 

  27. A. Jalalian-Khakshour, C. Phillips, L. Jackson, T. Dunlop, S. Margadonna, D. Deganello, Solid-state synthesis of NASICON (Na 3 Zr 2 Si 2 PO 12) using nanoparticle precursors for optimisation of ionic conductivity. Journal of Materials Science 55, 2291–2302 (2020)

    Article  Google Scholar 

  28. A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, Correlation between grain size and transport properties of lead titanate based-glass–ceramic nano-composites. J. Mater. Sci.: Mater. Electron. 27, 8446–8454 (2016)

    CAS  Google Scholar 

  29. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on as-sb-se glasses. J. Non-Cryst. Solids 88, 11–34 (1986)

    Article  CAS  Google Scholar 

  30. M. Hassaan, M. El-Desoky, M. Moustafa, Y. Iida, S. Kubuki, T. Nishida, Role of sulfur as a reducing agent for the transition metals incorporated into lithium silicate glass. Croat. Chem. Acta 88, 505–510 (2015)

    Article  CAS  Google Scholar 

  31. S.S. Danewalia, N. Gupta, S. Aggarwal, K. Singh, Effect of mixed oxide/fluoride bonding on the dielectric properties of oxyfluoride glasses. J. Mater. Sci.: Mater. Electron. 28, 18986–18993 (2017)

    CAS  Google Scholar 

  32. F.A. Abdel-Wahab, A.M. Fayad, M. Abdel-Baki, H. AbdelMaksoud, Role of non-bridging oxygen defect in the ionic conductivity and associated oxygen trap centers in lead-borate oxide glass: Effect of structural substitution of PbO for Ag2O and Li2O modifiers. J. Non-Cryst. Solids 500, 84–91 (2018)

    Article  CAS  Google Scholar 

  33. D. Souri, Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. J. Non-Cryst. Solids 356, 2181–2184 (2010)

    Article  CAS  Google Scholar 

  34. G. El-Barbary, D.E. Refaey, F. El-Tantawy, M. El-Desoky, Synthesis, Structural and Small Polaron Hopping Mechanism in La-Doped ZnS Nanocryatalline Films. Journal of Nanoelectronics and Optoelectronics 14, 342–348 (2019)

    Article  CAS  Google Scholar 

  35. R. Heikes, Thermoelectricity ed R.R., Heikes and RW Ure. New York: Interscience 1961, 81

  36. H. Mohamed, A. Ahmed, A. Diab, E.Y. Omar, Impact of aluminum on the Seebeck coefficient and magnetic properties of La0. 7Ba0. 3MnO3 manganites. Chem. Phys. Lett. 726, 22–28 (2019)

    Article  CAS  Google Scholar 

  37. M.M. El-Desoky, F.A. Ibrahim, M.Y. Hassaan, Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses. Solid State Sci. 13, 1616–1622 (2011)

    Article  CAS  Google Scholar 

  38. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968)

    Article  CAS  Google Scholar 

  39. L. Murawski, Electrical conductivity in iron-containing oxide glasses. Journal of Materials Science 17, 2155–2163 (1982)

    Article  CAS  Google Scholar 

  40. A.E. Chamryga, M. Nowagiel, T.K. Pietrzak, Syntheses and nanocrystallization of Na2O–M2O3–P2O5 alluaudite-like phosphate glasses (M = V, Fe, Mn). J. Non-Cryst. Solids 526, 119721 (2019)

    Article  CAS  Google Scholar 

  41. T.K. Pietrzak, P.E. Kruk-Fura, P.J. Mikołajczuk, J.E. Garbarczyk, Syntheses and nanocrystallization of NaF–M2O3–P2O5 NASICON‐like phosphate glasses (M = V, Ti, Fe). Int. J. Appl. Glass Sci. 11, 87–96 (2020)

    Article  CAS  Google Scholar 

  42. I. Austin, N. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001)

    Article  Google Scholar 

  43. N. Mott, Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967)

    Article  CAS  Google Scholar 

  44. S. Mollah, K. Hirota, K. Sega, B. Chaudhuri, H. Sakata, Non-adiabatic small-polaron hopping conduction in VN–PbO–TeO2 glasses. Phil. Mag. 84, 1697–1715 (2004)

    Article  CAS  Google Scholar 

  45. I. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Advances in physics 18, 41–102 (1969)

    Article  CAS  Google Scholar 

  46. S. Messerschmidt, A. Krampf, L. Vittadello, M. Imlau, T. Nörenberg, L.M. Eng, D. Emin, Small-Polaron Hopping and Low-Temperature (45–225 K) Photo-Induced Transient Absorption in Magnesium-Doped Lithium Niobate. Crystals 10, 809 (2020)

    Article  CAS  Google Scholar 

  47. V. Bogomolov, E. Kudinov, Y.A. Firsov, Polaron nature of current carriers in rutile (TiO2). SOVIET PHYSICS SOLID STATE, USSR 9, 2502 (1968)

    Google Scholar 

  48. A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 014321 (2012)

    Article  Google Scholar 

  49. K. Sega, Y. Kuroda, H. Sakata, Dc conductivity of V2O5–MnO–TeO2 glasses. J. Mater. Sci. 33, 1303–1308 (1998)

    Article  CAS  Google Scholar 

  50. Y.B. Singh, D. Biswas, S.K. Shah, S. Shaw, R. Mondal, A.S. Das, S. Kabi, L.S. Singh, Investigation of optical properties and electrical conductivity mechanism of Fe2O3–Sm2O3–ZnO–P2O5 quaternary glass nanocomposite systems. Materialia 2020, 100963

  51. A. Al-Syadi, M. Al-Assiri, H.M. Hassan, M. El-Desoky, Grain size effects on the transport properties of Li 3 V 2 (PO 4) 3 glass–ceramic nanocomposites for lithium cathode batteries. J. Mater. Sci.: Mater. Electron. 27, 4074–4083 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Desoky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, M.M., Wally, N.K., Sheha, E. et al. Impact of sodium oxide, sulfide, and fluoride-doped vanadium phosphate glasses on the thermoelectric power and electrical properties: structure analysis and conduction mechanism. J Mater Sci: Mater Electron 32, 3699–3712 (2021). https://doi.org/10.1007/s10854-020-05115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05115-7

Navigation