Skip to main content
Log in

Study of the chemical structure of CH3NH3PbI3 peroveskite films deposited on different substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optical characterizations of thin films of methylammonium lead tri-iodide (MAPbI3) have been investigated. A variety of samples were prepared at various temperatures using the spray pyrolysis technique. X-ray diffractograms have shown that prepared MAPbI3 films have a crystal structure on various substrates. The formation of a tetragonal structure was shown by peaks in the XRD spectrum, but PbI2 shows peaks over the entire spectral range of the films. The uniformity of the sprayed surface was studied using scanning electron microscopy (SEM). The SEM illustrated that the uniform appearance, but with small pinholes and the absence of agglomerations, covers the entire surface. To research optical properties, optical transmission is employed. The value of the optical energy difference decreases from 1.37 to 1.4 eV. The findings obtained can be seen as a good solution for obtaining more homogeneous and coherent layers used for applications of high-performance solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.Q. Mikas Remeika, Scalable solution coating of the absorber for perovskite solar cells. J. Energy Chem. 27(4), 1101–10 (2017)

    Article  Google Scholar 

  2. H. Jiang, H. Xue, L. Wang, F. Tang, F. Si, Effect of pressure-induced structural phase transition on electronic and optical properties of perovskite CH3NH3PBI3. Mater. Sci. Semicond. Process. 96, 59–65 (2019)

    Article  CAS  Google Scholar 

  3. A. Timoumi, S.N. Alamri, H. Alamri, The development of TiO2-graphene oxide nano composite thin films for solar cells. Results Phys. 11, 46–51 (2018)

    Article  Google Scholar 

  4. A.S. Hassanien, A.A. Akl, X-ray studies: CO2 pulsed laser annealing effects on the crystallographic properties, microstructures and crystal defects of vacuum-deposited nanocrystalline ZnSe thin films. CrystEngComm 20, 7120–7129 (2018)

    Article  CAS  Google Scholar 

  5. A.S. Hassanien, I.M. El Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films. J. Alloys Compd. 849, 156718 (2020)

    Article  CAS  Google Scholar 

  6. A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Phys. B 576, 411718 (2020)

    Article  CAS  Google Scholar 

  7. A.S. Hassanien, U.T. Khatoon, Synthesis and characterization of stable silver nanoparticles, Ag-NPs: discussion on the applications of Ag-NPs as antimicrobial agents. Phys. B 554, 21–30 (2019)

    Article  CAS  Google Scholar 

  8. A. Mishra, M.K. Fischer, P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009)

    Article  CAS  Google Scholar 

  9. J. Zhang, E.J. Juárez-Pérez, I. Mora-Seró, B. Viana, T. Pauporté, Fast and low temperature growth of electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 3, 4909–4915 (2015)

    Article  CAS  Google Scholar 

  10. M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 77, 131–146 (2017)

    Article  CAS  Google Scholar 

  11. M. Alsari, A.J. Pearson, J.T. Wang, Z. Wang, A. Montisci, N.C. Greenham et al., Degradation kinetics of inverted perovskite solar cells. Sci. Rep. 8, 5977 (2018)

    Article  Google Scholar 

  12. K. Mahmood, B.S. Swain, A. Amassian, 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv. Energy Mater. 5, 1500568 (2015)

    Article  Google Scholar 

  13. S.M. Jassim, N.A. Bakr, F.I. Mustafa, Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. J. Mater. Sci.: Mater. Electron. 31(19), 16199–16207 (2020)

    CAS  Google Scholar 

  14. D. Wang, W. Li, K. Deng, J. Wu, Z. Lan, Efficient mesoscopic perovskite solar cells from emulsion-based bottom-up self-assembled TiO2 microspheres. J. Mater. Sci.: Mater. Electron. 31, 1969–1975 (2019)

    Google Scholar 

  15. B.A. Al-Asbahi, S.M.H. Qaid, M. Hezam, I. Bedja, H.M. Ghaithan, A.S. Aldwayyan, Effect of deposition method on the structural and optical properties of CH3NH3PBI3 perovskite thin films. Opt. Mater. 103, 109836 (2020)

    Article  CAS  Google Scholar 

  16. Gagandeep, M. Singh, R. Kumar, V. Singh, Investigating the impact of layer properties on the performance of p-graphene/CH3NH3PBI3/n-cSi solar cell using numerical modelling. Superlattices Microstruct. 140, 106468 (2020)

    Article  Google Scholar 

  17. A.I. Rafieh, P. Ekanayake, A. Wakamiya, H. Nakajima, C.M. Lim, Enhanced performance of CH3NH3PBI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping. Sol. Energy 177, 374–381 (2019)

    Article  CAS  Google Scholar 

  18. J. Chen, N.-G. Park, Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J. Phys. Chem. C 122, 14039–14063 (2018)

    Article  CAS  Google Scholar 

  19. L. Dghoughi, B. Elidrissi, C. Bernede, M. Addou, M.A. Lamrani, M. Regragui et al., Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Appl. Surf. Sci. 253, 1823–1829 (2006)

    Article  CAS  Google Scholar 

  20. I. Kemerchou, F. Rogti, B. Benhaoua, N. Lakhdar, A. Hima, O. Benhaoua et al., Processing temperature effect on optical and morphological parameters of organic perovskite CH3NH3PBI3 prepared using spray pyrolysis method. J. Nano- Electron. Phys. 11, 030111–030114 (2019)

    Article  Google Scholar 

  21. K.A. Parrey, A. Aziz, S.G. Ansari, S.H. Mir, A. Khosla, A. Niazi, Synthesis and characterization of an efficient hole-conductor free halide perovskite CH3NH3PBI3 semiconductor absorber based photovoltaic device for IOT. J. Electrochem. Soc. 165, B3023–B3029 (2018)

    Article  CAS  Google Scholar 

  22. M. Kraini, N. Bouguila, J. El Ghoul, I. Halidou, S.A. Gomez-Lopera, C. Vázquez-Vázquez et al., Influence of annealing temperature on the properties of In2S3: Sn films deposited by spray pyrolysis. J. Mater. Sci.: Mater. Electron. 26, 5774–5782 (2015)

    CAS  Google Scholar 

  23. Y.C.S. Ilican, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J. Optoelectron. Adv. Mater. 10, 2578–2583 (2008)

    CAS  Google Scholar 

  24. A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency. Superlattices Microstruct. 129, 240–246 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by VTRS and UDERZA laboratories of El-Oued University and University of Biskra. The authors gratefully knowledge Zoulikha Hebboul from University of Laghouat, Pr. Nouar Tabet from Physics Department, University of Sharjah, for their valuable help and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Kemerchou or A. Hima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemerchou, I., Khechekhouche, A., Timoumi, A. et al. Study of the chemical structure of CH3NH3PbI3 peroveskite films deposited on different substrates. J Mater Sci: Mater Electron 32, 3303–3312 (2021). https://doi.org/10.1007/s10854-020-05078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05078-9

Navigation