Skip to main content
Log in

Structural and Optical Properties of Two-Step Dip-Coated CH3NH3PbI3 Films Based on Underlying Dip-Coated PbI2 Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin films of methylammonium lead iodide (MAPbI3) were deposited on glass slides under various preparation conditions by a two-step dip-coating method, using dip-coated lead iodide (PbI2) thin films as the underlying layer. The dip-coating method used involved immersion of a slowly rotating substrate in the required solution. The PbI2 film was immersed into methylammonium iodide (MAI) solution in 2-propanol for 10–60 min. The MAPbI3 films were thermally annealed at 85 °C for 10–30 min. Fundamental properties of the annealed MAPbI3 films were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry. The XRD patterns and SEM micrographs revealed single tetragonal-phase structure, with diffraction peaks became intense and narrow with increasing dipping times and upon thermal annealing. Transmittance spectra of these MAPbI3 film/glass systems declined steeply near \(780\mathrm{ nm}\), equivalent to a bandgap energy of \(1.55\mathrm{ eV}\), assigned to the MAPbI3 with optical absorption coefficient of \({10}^{5} {\mathrm{cm}}^{-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  2. M.A. Green, A. Ho-Baillie, and H.J. Snaith, The Emergence of Perovskite Solar Cells. Nat. Photon. 8, 506 (2014).

    Article  CAS  Google Scholar 

  3. S.D. Stranks and H.J. Snaith, Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nat. Nanotechnol. 10, 391 (2015).

    Article  CAS  Google Scholar 

  4. H. Wang and D.H. Kim, Perovskite-Based Photodetectors: Materials and Devices. Chem. Soc. Rev. 46, 5204 (2017).

    Article  CAS  Google Scholar 

  5. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, and X.Y. Zhu, Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater. 14, 636 (2015).

    Article  CAS  Google Scholar 

  6. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, and F. Hanusch, Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 9, 687 (2014).

    Article  CAS  Google Scholar 

  7. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, and W. Heiss, Detection of X-ray Photons by Solution-Processed Lead Halide Perovskites. Nat. Photon. 9, 444 (2015).

    Article  CAS  Google Scholar 

  8. S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, and C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 5, 1035 (2014).

    Article  CAS  Google Scholar 

  9. T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y.M. Yang, and Y. Yang, Perovskite Solar Cells: Film Formation and Properties. J. Mater. Chem. A 3, 9032 (2015).

    Article  CAS  Google Scholar 

  10. A.M. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, and M. Van Schilfgaarde, Experimental and Theoretical Optical Properties of Methylammonium Lead Halide Perovskites. Nanoscale 8, 6317 (2016).

    Article  CAS  Google Scholar 

  11. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S.J. Moon, and C. Ballif, Complex Refractive Index Spectra of CHsNH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 6, 66 (2014).

    Article  CAS  Google Scholar 

  12. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W. HoBaillie, Solar Cell Efficiency Tables (version 50). Prog. Photovolt. Res. Appl. 25, 668 (2017).

    Article  Google Scholar 

  13. D. Zhou, T. Zhou, Y. Tian, X. Zhu, and Y. Tu, Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 8148072 (2018).

    Article  CAS  Google Scholar 

  14. M.H. Zulkifli and A. Bahtiar, Optical and Structural Properties of Perovskite Films Prepared with Two-Step Spin-Coating Method. in AIP Conference Proceedings 1712, 050012 (2016).

  15. X.G. Sun, Z.F. Shi, Y. Li, L.Z. Lei, S. Li, D. Wu, and T.T. Xu, Effect of CH3NH3I Concentration on the Physical Properties of Solution-Processed Organometal Halide Perovskite CH3NH3PbI3. J. Alloy. Compd. 706, 274 (2017).

    Article  CAS  Google Scholar 

  16. M. Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, and M. Eslamian, Optimization of Spray Coating for the Fabrication of Sequentially Deposited Planar Perovskite Solar Cells. Renew. Sust. Energy Rev. 62, 1012 (2016).

    Article  CAS  Google Scholar 

  17. H. Zhou, Q. Chen, and Y. Yang, Vapor-Assisted Solution Process for Perovskite Materials and Solar Cells. MRS Bull. 40, 667 (2015).

    Article  CAS  Google Scholar 

  18. D.A.A. Leal, B. Krishnan, S. Shaji, and D.A. Avellaneda, On the Structure and Physical Properties of Methyl Ammonium Lead Iodide Perovskite thin Films by the Two-step Deposition Method. Mater. Chem. Phys. 215, 137 (2018).

    Article  CAS  Google Scholar 

  19. M. Adnan and J.K. Lee, All Sequential Dip-Coating Processed Perovskite Layers from an Aqueous Lead Precursor for High Efficiency Perovskite Solar Cells. Sci. Rep. 8, 2168 (2018).

    Article  CAS  Google Scholar 

  20. T.Y. Hsieh, C.K. Huang, T.S. Su, C.Y. Hong, and T.C. Wei, Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation Between Morphology Evolution and Photovoltaic Performance. ACS Appl. Mater. Interfaces 9, 8623 (2017).

    Article  CAS  Google Scholar 

  21. Y. Liu, T. Zhou, M. Sun, T. Zhao, Q. Wei, Y. Sun, R. Wang, F. Jin, Q. Niu, and Z. Su, Scaling Behavior and Morphology Evolution of CH3NH3PbI3 Perovskite Thin Films Grown by Thermal Evaporation. Mater. Res. Express 4, 075510 (2017).

    Article  CAS  Google Scholar 

  22. A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurišić, W.F. Leung, J. Hao, W.K. Chanf, and C. Suryaa, Efficiency Enhancement by Defect Engineering in Perovskite Photovoltaic Cells Prepared Using Evaporated PbI2/CH3NH3I Multilayers. J. Mater. Chem. A 3, 9223 (2015).

    Article  CAS  Google Scholar 

  23. M. Sessolo, C. Momblona, L. Gil-Escrig, and H.J. Bolink, Photovoltaic Devices Employing Vacuum-Deposited Perovskite Layers. MRS Bull. 40, 660 (2015).

    Article  CAS  Google Scholar 

  24. S.Y. Hsiao, H.L. Lin, W.H. Lee, W.L. Tsai, K.M. Chiang, W.Y. Liao, C.Z. Ren-Wu, C.Y. Chen, and H.W. Lin, Efficient ALl-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum. Adv. Mater. 28, 7013 (2016).

    Article  CAS  Google Scholar 

  25. G. Liang, H. Lan, P. Fan, C. Lan, Z. Zheng, H. Peng, and J. Luo, Highly Uniform Large-Area (100 cm2) Perovskite CH3NH3PbI3 Thin-Films Prepared by Single-Source Thermal evaporation. Coatings 8, 256 (2018).

    Article  CAS  Google Scholar 

  26. G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, and H.J. Bolink, Perovskite Solar Cells Prepared by Flash Evaporation. Chem. Commun. 51, 7376 (2015).

    Article  CAS  Google Scholar 

  27. C. Chong, L. Fumin, Z. Liangxin, S. Zhitao, W. Yujuan, L. Qiang, T. Furui, Y. Gentian, H. Qingsong, and W. Mingtai, Efficient and Stable Perovskite Solar Cells Thanks to Dual Functions of Oleyl Aminecoated PbSO4 Blocking (PbO)4 Quantum Dots: Defect Passivation and Moisture/oxygen. Nano Energy 68, 104313 (2020).

    Article  CAS  Google Scholar 

  28. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  29. B.E. Cohen, S. Gamliel, and L. Etgar, Parameters Influencing the Deposition of Methylammonium Lead Halide Iodide in Hole Conductor Free Perovskite-Based Solar Cells. APL Mater. 2, 081502 (2014).

    Article  CAS  Google Scholar 

  30. F. Zabihi, M.R. Ahmadian-Yazdi, and M. Eslamian, Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC). Nanoscale Res. Lett. 11, 71 (2016).

    Article  CAS  Google Scholar 

  31. M. Habibi, M.R. Ahmadian-Yazdi, and M. Eslamian, Optimization Spray Coating for the Fabrication of Sequentially Deposited Planar Perovskite Solar Cells. J. Photon. Energy 7, 022003 (2017).

    Article  Google Scholar 

  32. M. AbuEid, A study of structural, composition and optical properties of lead-iodide based perovskite thin films fabricated under various experimental conditions. (M.Sc. thesis, University of Jordan, Amman, Jordan, 2018).

  33. Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, and M.J. Heben, Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chem. Mater. 27, 4612 (2015).

    Article  CAS  Google Scholar 

  34. I.A. Kariper, Optical and Structural Properties of PbI2 Thin Film Produced via Chemical Dipping Method. Opt. Rev. 23, 401 (2016).

    Article  CAS  Google Scholar 

  35. X. Guo, C. McCleese, C. Kolodziej, A.C. Samia, Y. Zhao, and C. Burda, Identification and Characterization of the Intermediate Phase in Hybrid Organic–Inorganic MAPbI3 perovskite. Dalton Trans. 45, 3806 (2016).

    Article  CAS  Google Scholar 

  36. T.M. Al-Daraghmeh, M.H. Saleh, M.J.A. Ahmad, B.N. Bulos, K.M. Shehadeh, and M.M.A.-G. Jafar, Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Film. J. Electron. Mater. 47, 1806 (2018).

    Article  CAS  Google Scholar 

  37. K. Liang, D.B. Mitzi, and M.T. Prikas, Synthesis and Characterization of Organic/Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chem. Mater. 10, 403 (1998).

    Article  CAS  Google Scholar 

  38. L. Zhu, J. Shi, S. Lv, Y. Yang, X. Xu, Y. Xu, J. Xiao, H. Wu, Y. Luo, D. Li, and Q. Meng, Temperature-Assisted Controlling Morphology and Charge Transport Property for Highly Efficient Perovskite Solar Cells. Nano Energy 15, 540 (2015).

    Article  CAS  Google Scholar 

  39. H. Zhang, Y. Wang, H. Wang, M. Ma, S. Dong, and Q. Xu, Influence of Drying Temperature on Morphology of MAPbI3 Thin Films and the Performance of Solar Cells. J. Alloy. Compd. 773, 511 (2019).

    Article  CAS  Google Scholar 

  40. T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 1, 5628 (2013).

    Article  CAS  Google Scholar 

  41. T. Oku, Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells, Solar Cells-New Approaches and Reviews. (IntechOpen, 2015), Ch. 3, p. 77–101

  42. J. Chen, J. Song, F. Huang, H. Li, S. Liu, M. Wang, and Y. Shen, The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells. J. Phys. Chem. C 121, 17053 (2017).

    Article  CAS  Google Scholar 

  43. J.H. Im, I.H. Jang, N. Pellet, M. Grätzel, and N.G. Park, Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nat. Nanotechnol. 9, 927 (2014).

    Article  CAS  Google Scholar 

  44. M.H. Saleh, N.M. Ershaidat, M.J.A. Ahmad, B.N. Bulos, and M.M.A.G. Jafar, Evaluation of Spectral Dispersion of Optical Constants of a-Se Films from Their Normal-Incidence Transmittance Spectra using Swanepoel Algebraic Envelope Approach. Opt. Rev. 24, 260 (2017).

    Article  CAS  Google Scholar 

  45. M.M.A.G. Jafar, M.H. Saleh, T.M. Al-Daraghmeh, M.J.A. Ahmad, M.A. AbuEid, N.M. Ershaidat, and B.N. Bulos, Structural, Stoichiometry and Optical Constants of Crystalline Undoped Lead Iodide Films Prepared by the Flash-Evaporation Method. Appl. Phys. A 125, 672 (2019).

    Article  CAS  Google Scholar 

  46. C.W. Chen, S.Y. Hsiao, C.Y. Chen, H.W. Kang, Z.Y. Huang, and H.W. Lin, Optical Properties of Organometal Halide Perovskite Thin Films and General Device Structure Design Rules for Perovskite Single and Tandem Solar Cells. J. Mater. Chem. A 3, 9152 (2015).

    Article  CAS  Google Scholar 

  47. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, and S. Fujimoto, Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3. Phys. Rev. Appl. 5, 014012 (2016).

    Article  CAS  Google Scholar 

  48. M. Anaya, G. Lozano, M.E. Calvo, W. Zhang, M.B. Johnston, H.J. Snaith, and H. Míguez, Optical description of Mesostructured Organic–Inorganic Halide perovskite Solar Cells. J. Phys. Chem. Lett. 6, 48 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa M. Abdul-Gader Jafar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuEid, M.A., Jafar, M.M.AG., Hodali, H.A. et al. Structural and Optical Properties of Two-Step Dip-Coated CH3NH3PbI3 Films Based on Underlying Dip-Coated PbI2 Films. J. Electron. Mater. 51, 3873–3884 (2022). https://doi.org/10.1007/s11664-022-09637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09637-0

Keywords

Navigation