Skip to main content
Log in

Enhanced ferroelectric and photoelectric properties in lead-free Bi1.07FeO3-modified K0.5Na0.5NbO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (K0.5Na0.5NbO3)0.97–(Bi1.07FeO3)0.03 (KNN–BFO) ferroelectric thin films were epitaxially grown on LaNiO3-buffered SrTiO3(STO) by the pulsed laser deposition. The influence of the BiFeO3 addition on the electrical, bandgap, and photoelectric properties in KNN thin films was investigated systematically. Interestingly, compared with KNN films, the KNN–BFO thin films exhibit a significant enhancement on the ferroelectric and photoelectric properties. The enhanced ferroelectric properties were due to the depression of the leakage current and the improvement of the ferroelectric domains. Moreover, the photoelectric effect in the visible region can be ascribed to the improved ferroelectric properties and the narrow bandgap of KNN film modified by BiFeO3 addition. Our results indicate that the lead-free KNN–BFO thin films with enhanced ferroelectric and photoelectric characterizers may own a potential for environmental-friendly informational storage and photoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Sando, A. Barthélémy, M. Bibes, BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. 26(47), 473201 (2014). https://doi.org/10.1088/0953-8984/26/47/473201

    Article  CAS  Google Scholar 

  2. J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1(2), 021303 (2014). https://doi.org/10.1063/1.4870957

    Article  CAS  Google Scholar 

  3. D. Sando, B. Xu, L. Bellaiche, V. Nagarajan, A multiferroic on the brink: uncovering the nuances of strain-induced transitions in BiFeO3. Appl. Phys. Rev. 3(1), 011106 (2016). https://doi.org/10.1063/1.4944558

    Article  CAS  Google Scholar 

  4. M. Čebela, D. Zagorac, K. Batalović, J. Radaković, B. Stojadinović, V. Spasojević, R. Hercigonja, BiFeO3 perovskites: a multidisciplinary approach to multiferroics. Ceram. Int. 43(1), 1256–1264 (2017). https://doi.org/10.1016/j.ceramint.2016.10.074

    Article  CAS  Google Scholar 

  5. X.X. Shi, X.Q. Liu, X.M. Chen, Readdressing of magnetoelectric effect in bulk BiFeO3. Adv. Funct. Mater. 27(12), 1604037 (2017). https://doi.org/10.1002/adfm.201604037

    Article  CAS  Google Scholar 

  6. J.H. Lee, I. Fina, X. Marti, Y.H. Kim, M. Alexe, Spintronic functionality of BiFeO3 domain walls. Adv. Mater. 26, 7078–7082 (2014). https://doi.org/10.1002/adma.201402558

    Article  CAS  Google Scholar 

  7. M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq, L.Q. Jing, Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 180, 219–226 (2016). https://doi.org/10.1016/j.apcatb.2015.06.035

    Article  CAS  Google Scholar 

  8. A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R.D. Johnson, R. Rüffer, A.F. Popkov, C. Carrétéro, P. Rovillain, J.M. Le Breton, B. Dkhil, M. Cazayous, Y. Gallais, M.A. Méasson, A. Sacuto, P. Manuel, A.K. Zvezdin, A. Barthélémy, J. Juraszek, M. Bibes, Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29(9), 1602327 (2017). https://doi.org/10.1002/adma.201602327

    Article  Google Scholar 

  9. X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8(39), 26190–26197 (2016). https://doi.org/10.1021/acsami.6b04497

    Article  CAS  Google Scholar 

  10. Z.H. Chen, J. Liu, Y. Qi, D.Y. Chen, S.L. Hsu, A.R. Damodaran, X.Q. He, T.N. ’Diaye, A. Rockett, A.W. Martin, 180° ferroelectric stripe nanodomains in BiFeO3 thin films. Nano Lett. 15(10), 6506–6513 (2015). https://doi.org/10.1021/acs.nanolett.5b02031

    Article  CAS  Google Scholar 

  11. H. Matsuo, Y. Kitanaka, R. Inoue, Y. Noguchi, M. Miyayama, Switchable diode-effect mechanism in ferroelectric BiFeO3 thin film capacitors. J. Appl. Phys. 118(11), 114101 (2015). https://doi.org/10.1063/1.4930590

    Article  CAS  Google Scholar 

  12. D. Li, X. Sun, X. Chuai, Z. Wu, Z. Cao, Y.F. Yan, D.M. Zhang, Enhanced ferro- and piezoelectric properties of a sol-gel derived BiFe0.95Mn0.05O3 thin film on Bi2O3-buffered Pt/Ti/SiO2/Si substrate. J. Cryst. Growth. 338, 85–90 (2012). https://doi.org/10.1016/j.jcrysgro.2011.10.010

    Article  CAS  Google Scholar 

  13. S.H. Joa, S.G. Leea, S.H. Leeb, Bull.Structural and pyroelectric properties of sol-gel derived multiferroic BFO thin films. Mater. Res. Bull. 47(2), 409–412 (2012). https://doi.org/10.1016/j.materresbull.2011.11.009

    Article  CAS  Google Scholar 

  14. Y. Sun, F. Guo, Q. Lu, S. Zhao, Improved ferroelectric photovoltaic effect in Mn doped lead-free K0.5Na0.5NbO3 films. Ceram. Int. 44(12), 13994–13998 (2018). https://doi.org/10.1016/j.ceramint.2018.04.250

    Article  CAS  Google Scholar 

  15. W. Chen, Z. Yu, J. Pang, P. Yu, G. Tan, C. Ning, Fabrication of biocompatible potassium sodium niobate piezoelectric ceramic as an electroactive implant. Materials 10(4), 345 (2017). https://doi.org/10.3390/ma10040345

    Article  CAS  Google Scholar 

  16. Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Harnessing low frequency-based energy using a K0.5Na0.5NbO3(KNN) pigmented piezoelectric paint system. J. Mater. Chem. C 5, 5501–5508 (2017). https://doi.org/10.1039/C7TC00846E

    Article  CAS  Google Scholar 

  17. M.D. Nguyen, M. Dekkers, E.P. Houwman, H.T. Vu, H.N. Vu, G. Rijnders, Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers. Mater. Lett. 164, 413–416 (2016). https://doi.org/10.1016/j.matlet.2015.11.044

    Article  CAS  Google Scholar 

  18. H. Tian, J. Jia, X. Cui, B. Yao, Z. Zhou, D. Chen, Temperature influence on the voltage-controlled diffractive property of Mn-doped potassium sodium tantalate niobate crystal. Opt. Mater. 35(12), 2425–2428 (2013). https://doi.org/10.1016/j.optmat.2013.06.050

    Article  CAS  Google Scholar 

  19. N. Li, W.L. Li, L.D. Wang, D. Xu, Q.G. Chi, W.D. Fei, Improved leakage property and reduced crystallization temperature by V2O5 seed layer in K0.4Na0.6NbO3 thin films derived from chemical solution deposition. J. Alloy Compd. 552, 269–273 (2013). https://doi.org/10.1016/j.jallcom.2012.10.072

    Article  CAS  Google Scholar 

  20. P. Yongsiri, S. Eitssayeam, G. Rujijanagul, S. Sirisoonthorn, T. Tunkasiri, K. Pengpat, Fabrication of transparent lead-free KNN glass ceramics by incorporation method. Nanoscale Res. Lett. 7(1), 136 (2012). https://doi.org/10.1186/1556-276x-7-136

    Article  Google Scholar 

  21. W. Zhu, J. Zhu, M. Wang, B. Zhu, X. Zhu, G. Pezzotti, Raman tensor analysis of (K0.5Na0.5)NbO3-LiSbO3 lead-free ceramics and its application to study grain/domain orientation. J. Raman Spectrosc. 43, 1320–1328 (2012). https://doi.org/10.1002/jrs.4031

    Article  CAS  Google Scholar 

  22. J.A. Peña-Jiménez, F. González, R. López-Juárez, J.M. Hernández-Alcántara, E. Camarillo, H. Murrieta-Sánchez, L. Pardo, M.E. Villafuerte-Castrejón, Optical and piezoelectric study of KNN solid solutions co-doped with La-Mn and Eu-Fe. Materials 9(10), 805 (2016). https://doi.org/10.3390/ma9100805

    Article  CAS  Google Scholar 

  23. Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, H. Jin, Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices. J. Alloys Compds. 683, 171–177 (2016). https://doi.org/10.1016/j.jallcom.2016.05.084

    Article  CAS  Google Scholar 

  24. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015). https://doi.org/10.1021/cr5006809

    Article  CAS  Google Scholar 

  25. X. Vendrell, O. Raymond, D.A. Ochoa, J.E. García, L. Mestres, Growth and physical properties of highly oriented La-doped (K, Na)NbO3 ferroelectric thin films. Thin Solid Films. 577, 35–41 (2015). https://doi.org/10.1016/j.tsf.2015.01

    Article  CAS  Google Scholar 

  26. S.J. Sang, Z.Y. Yuan, L.M. Zheng, E.W. Sun, R. Zhang, J.J. Wang, R. Wang, B. Yang, M. Liu, Optical transmittance and Raman scattering studies of (K, Na)(Nb, Ta) O3 single crystal. Opt. Mater. 45, 104–108 (2015). https://doi.org/10.1016/j.optmat.2015.03.016

    Article  CAS  Google Scholar 

  27. T. Li, G. Wang, K. Li, G. Du, Y. Chen, Z. Zhou, D. Rémiens, X. Dong, Electrical properties of lead-free KNN films on SRO/STO by RF magnetron sputtering. Ceram. Int. 40(1), 1195–1198 (2015). https://doi.org/10.1016/j.ceramint.2013.07.005

    Article  CAS  Google Scholar 

  28. L. Zheng, X. Huo, R. Wang, J. Wang, W. Jiang, W. Cao, Large size lead-free (Na, K)(Nb,Ta)O3 piezoelectric single crystal: growth and full tensor properties. Cryst. Eng. Commun. 15(38), 7718–7722 (2013). https://doi.org/10.1039/C3CE (4065 8J)

    Article  CAS  Google Scholar 

  29. D.Y. Wang, D.M. Lin, K.W. Kwok, N.Y. Chan, J.Y. Dai, S. Li, W. Chan, Ferroelectric, piezoelectric, and leakage current properties of (K0.48Na0.48Li0.04)(Nb0.775Ta0.225)O3 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 98(2), 24 (2011). https://doi.org/10.1063/1.3535608

    Article  CAS  Google Scholar 

  30. K. Li, F.L. Li, Y. Wang, K.W. Kwok, H.L. Chan, Hot-pressed K0.48Na0.52Nb1–xBixO3 (x = 0.05–0.15) lead-free ceramics for electro-optic applications. Mater. Chem. Phys. 131(1–2), 320–324 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.048

    Article  CAS  Google Scholar 

  31. M. Abazari, A. Safari, Leakage current behavior in lead-free ferroelectric (K, Na) NbO3-LiTaO3-LiSbO3 thin films. Appl. Phys. Lett. 97, 262902 (2010). https://doi.org/10.1063/1.3531575

    Article  CAS  Google Scholar 

  32. C.W. Ahn, S.Y. Lee, H.J. Lee, A. Ullah, J.S. Bae, E.D. Jeong, J.S. Choi, B.H. Park, I.W. Kim, The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films. J. Phys. D 42, 215304 (2009). https://doi.org/10.1088/0022-3727/42/21/215304

    Article  CAS  Google Scholar 

  33. H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Raman spectroscopy of (K,Na)NbO3 and (K,Na)1–xLixNbO3. Appl. Phys. Lett. 93, 262901 (2008). https://doi.org/10.1063/1.3056658

    Article  CAS  Google Scholar 

  34. S. Zhang, R. Xia, T.R. Shrout, Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett. 91(13), 132913 (2007). https://doi.org/10.1063/1.2794400

    Article  CAS  Google Scholar 

  35. J.J. Choi, D.S. Park, W.H. Yoon, J. Ryu, B.D. Hahn, K.H. Kim, Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007). https://doi.org/10.1063/1.2720751

    Article  CAS  Google Scholar 

  36. M. Blomqvist, S. Khartsev, A. Grishin, Electro-optic effect in ferroelectric Na0.5K0.5 NbO3 thin films on oxide substrates. Integr. Ferroelectr. 80(1), 97–106 (2006). https://doi.org/10.1080/10584580600656569

    Article  CAS  Google Scholar 

  37. J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, Y. Jiang, Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-LiSbO3 lead-free ceramics. J. Appl. Phys. 102(11), 115 (2007). https://doi.org/10.1063/1.2822454

    Article  CAS  Google Scholar 

  38. M. Jiang, X. Liu, G. Chen, C. Zhou, Dielectric and piezoelectric properties of LiSbO3 doped 0.995K0.5Na0.5NbO3-0.005BiFeO3 piezoelectric ceramics. Mater. Lett. 63, 1262–1265 (2009). https://doi.org/10.1016/j.matlet.2009.02.066

    Article  CAS  Google Scholar 

  39. J.P. Liu, Q. Miao, Z. Liu, Z. Xu, K. Ren, Y. Wu, J.M. Chen, X. Xu, Y. Jiang, Tuning effective spin hall angles via oxygen vacancies in multiferroic BiFeO3-based heterostructures. Adv. Electron. Mater. 5, 1900435 (2019). https://doi.org/10.1002/aelm.201970052

    Article  CAS  Google Scholar 

  40. Q. Liu, J. Miao, Z. Xu, P. Liu, K. Meng, X. Xu, Y. Wu, Y. Jiang, Temperature dependent transport properties and rectification in La0.7Sr0.3MnO3/La0.7Te0.3MnO3 p–n junctions. Appl. Phys. Express 12, 051013 (2019). https://doi.org/10.7567/1882-0786/ab129d

    Article  CAS  Google Scholar 

  41. S. Zhang, M. Han, J. Zhang, Optoelectronic and ferroelectric properties of cerium-doped (Na0.5Bi0.5)(Ti0.99Fe0.01)O3 nanocrystalline films on (111) Pt/TiO2/SiO2/Si: a composition-dependent study. ACS Appl. Mater. Interfaces. (2013). https://doi.org/10.1021/am400196c

    Article  Google Scholar 

  42. J. Wu, G. Kang, J. Wang, Electrical behavior and oxygen vacancies in BiFeO3/[(Bi1/2Na1/2)0.94Ba0.06]TiO3 thin film. Appl. Phys. Lett. 95(19), 21 (2009). https://doi.org/10.1063/1.3259655

    Article  CAS  Google Scholar 

  43. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, Strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009). https://doi.org/10.1126/science.1177046

    Article  CAS  Google Scholar 

  44. J. Xu, Z. Jia, N. Zhang, T. Ren, Influence of la and mn dopants on the current-voltage characteristics of BiFeO3/ZnO heterojunction. J. Appl. Phys. 111, 074101 (2012). https://doi.org/10.1063/1.3699033

    Article  CAS  Google Scholar 

  45. H. Yang, H. Wang, G.F. Zou, M. Jain, N.A. Suvorova, D.M. Feldmann, P.C. Dowden, R.F. DePaula, J.L. MacManus-Driscoll, A.J. Taylor, Q.X. Jia, Leakage mechanisms of self-assembled (BiFeO3)0.5(Sm2O3)0.5 nanocomposite films. Appl. Phys. Lett. 93(14), ,142904 (2008). https://doi.org/10.1063/1.3000013

    Article  CAS  Google Scholar 

  46. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. Macmanus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86(6), 62903 (2005). https://doi.org/10.1063/101862336

    Article  Google Scholar 

  47. Y. Wang, C.W. Nan, Enhanced ferroelectricity in ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89(5), 52903 (2006). https://doi.org/10.1063/1.2222242

    Article  CAS  Google Scholar 

  48. H.R. Liu, Y.X. Sun, Substantially enhanced ferroelectricity in Ti doped BiFeO3 films. J. Phys. D 40(23), 7530–7533 (2007). https://doi.org/10.1088/0022-3727/40/23/043

    Article  CAS  Google Scholar 

  49. A.Z. Simoes, C.S. Riccardi, E. Longo, B. Mizaikoff, Mater. Chem. Phys. 124(2–3), 894–899 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.059

    Article  CAS  Google Scholar 

  50. R.R. Das, D.M. Kim, S.H. Back, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer, Appl. Phys. Lett. 88(24), 242904 (2006). https://doi.org/10.1063/1.2213347

    Article  CAS  Google Scholar 

  51. R. Seshadri, N.A. Hill, Chem. Mater. 13(9), 2892–2899 (2001). https://doi.org/10.1021/cm010090m

    Article  CAS  Google Scholar 

  52. Y.G. Zhang, H.W. Zheng, J.X. Zhang, W.F. Zhang, Photovoltaic effects in Bi4 Ti3O12 thin films prepared by a sol-gel method. Mater. Lett. 125, 25–27 (2014). https://doi.org/10.1016/j.matlet.2014.03.146

    Article  CAS  Google Scholar 

  53. D. Huang, H. Deng, P. Yang, J. Chu, Optical and electrical properties of multiferroic bismuth ferrite thin films fabricated by sol-gel technique. Mater. Lett. 64(20), 2233–2235 (2010). https://doi.org/10.1016/j.matlet.2010.07.020

    Article  CAS  Google Scholar 

  54. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J. Alloys Compds. 509(6), 2913 (2011). https://doi.org/10.1016/j.jallcom.2010.11.153

    Article  CAS  Google Scholar 

  55. D.K. Mishra, X. Qi, Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J. Alloy. Compd. 504(1), 0–31 (2010). https://doi.org/10.1016/j.jallcom.2010.05.107

    Article  CAS  Google Scholar 

  56. V.N. Harshan, S. Kotru, Influence of work-function of top electrodes on the photovoltaic characteristics of Pb0.95La0.05Zr0.54Ti0.46O3 thin film capacitors. Appl. Phys. Lett. 100, 173901 (2012). https://doi.org/10.1063/1.4705425

    Article  CAS  Google Scholar 

  57. Y.Z. Sun, F. Guo, J.Y. Chen, S.F. Zhao, Improved ferroelectric and photovoltaic properties of BiMnO3 modified lead-free K0.5Na0.5NbO3 solid-solution films. Appl. Phys. Lett. 111(25), 253901 (2017). https://doi.org/10.1063/1.5006643

    Article  CAS  Google Scholar 

  58. B. Guo, Y. Guo, W. Qin, H. Liu, D. Zhang, Optical properties of BiFeO3-(Na0.5Bi0.5)TiO3 thin films deposited on glass substrates by chemical solution deposition. Mater. Lett. 71, 60–62 (2012). https://doi.org/10.1016/j.matlet.2011.12.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Key R&D Program of China (Grant No. 2018YFB0704100), the National Science Foundation of China (Grants Nos. 11974042, 51731003, 51927802, 51971023, 11574027, and  61674013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. L. Zhao or J. Miao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.P., Lv, Z.L., Cao, J.P. et al. Enhanced ferroelectric and photoelectric properties in lead-free Bi1.07FeO3-modified K0.5Na0.5NbO3 thin films. J Mater Sci: Mater Electron 32, 2051–2060 (2021). https://doi.org/10.1007/s10854-020-04972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04972-6

Navigation