Skip to main content

Advertisement

Log in

The Ba(Bi0.5Ta0.5)O3 modified (K0.5Na0.5)NbO3 lead-free transparent ferroelectric ceramics with high transmittance and excellent energy storage performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For solving the contradiction that good optical properties and electrical properties of (K0.5Na0.5)NbO3 (KNN)-based transparent ferroelectric ceramics cannot be achieved at the same time. The modification by doping and improved sintering techniques can not only increase the optical properties of ceramics but also improve and enhance the electrical properties of ceramics. (1 − x)(K0.5Na0.5)NbO3xBa(Bi0.5Ta0.5)O3 (x = 0.01, 0.015, 0.02, 0.025, 0.03) lead-free transparent ferroelectric ceramics were synthesized by conventional solid-phase sintering method. The KNN ceramic was modified by Ba(Bi0.5Ta0.5)O3 to obtain a large optical band gap energy, submicron grains, and a highly symmetric phase structure when x = 0.025, thus gaining highly transmittance of 67.2% in near-infrared region. The smaller grain size and dense microstructure give the ceramic with x = 0.025 a higher dielectric breakdown strength. Therefore, the excellent energy storage performance is achieved at high electric field of 200 kV/cm with energy storage density (Wrec) and energy storage efficiency (η) of 1.41 J/cm3 and 42%, respectively. The results show that (K0.5Na0.5)NbO3–Ba(Bi0.5Ta0.5)O3 ceramics are considered to be excellent candidates for the field of new transparent electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Date availability

The available in the article are true and valid which are recognized by all authors.

References

  1. G. Dutta, J. Rainbow, U. Zupancic, S. Papamatthaiou, P. Estrela, D. Moschou, Chemosensors 6, 43 (2018)

    Article  CAS  Google Scholar 

  2. J.F. Harvey, M.B. Steer, T.S. Rappaport, IEEE Access 7, 52350–52359 (2019)

    Article  Google Scholar 

  3. H. Cai, J. Lin, Y.J. Lin, Z.J. Liu, H.T. Tang, H.R. Wang, L.G. Zhu, S. Han, ACM Trans. Des. Autom. Electron. Syst. 27, 1–50 (2022)

    Article  Google Scholar 

  4. A. Mansur, T.M. Hauer, M.W. Hussain, M.K. Alatwi, A. Tarazi, M. Khodadadi, C.H. Tator, J. Neurotrauma 35, 1886–1894 (2018)

    Article  Google Scholar 

  5. Z.H. Xiao, S.J. Yu, Y.M. Li, S.C. Ruan, L.B. Kong, Q. Huang, Z.R. Huang, K. Zhou, H.B. Su, Z.J. Yao, W.X. Que, Y. Liu, T.S. Zhang, J. Wang, P. Liu, D.Y. Shen, M. Allix, J. Zhang, D.Y. Tang, Mater. Sci. Eng. R 139, 100518 (2020)

    Article  Google Scholar 

  6. L.Q. Xu, F. Chen, F. Jin, D. Lan, L.L. Qu, K.X. Zhang, Z.X. Zhang, G.Y. Gao, H.L. Huang, T. Li, F.P. Zhang, K. Wang, Z. Zhou, W.B. Wu, Appl. Phys. Lett. 115(20), 202901 (2019)

    Article  CAS  Google Scholar 

  7. M. Zhang, H.B. Yang, D. Li, Y. Lin, J. Alloys Compd. 829, 154565 (2020)

    Article  CAS  Google Scholar 

  8. A. Presas, Y.Y. Luo, Z.W. Wang, D. Valentin, M. Egusquiza, Sensors 18(7), 2251 (2018)

    Article  Google Scholar 

  9. S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, Prog. Solid State Chem. 41, 20–54 (2013)

    Article  CAS  Google Scholar 

  10. Y. Chen, X.L. Bao, C.M. Wong, J. Cheng, H.D. Wu, H.Z. Song, X.R. Ji, S.H. Wu, Ceram. Int. 44, 22725–22730 (2018)

    Article  CAS  Google Scholar 

  11. Z.W. Xu, X. Zeng, Z.D. Cao, L. Ling, P.S. Qiu, X.Y. He, J. Electroceram. 44, 215–222 (2020)

    Article  CAS  Google Scholar 

  12. P.K. Panda, J. Mater. Sci. 44, 5049–5062 (2009)

    Article  CAS  Google Scholar 

  13. H. Wang, X. Zhai, J.W. Xu, L. Yang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 308–311 (2019)

    Article  CAS  Google Scholar 

  14. H.T. Wu, G.B. Hu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, S.J. Zhou, J. Electron. Mater. 51, 831–837 (2021)

    Article  CAS  Google Scholar 

  15. G.B. Hu, J.T. Wang, X. Liu, H.N. Liu, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, W. Qiu, J. Mater. Sci. Mater. Electron. 32, 22300–22308 (2021)

    Article  CAS  Google Scholar 

  16. X. Wu, C.G. Fang, J.F. Lin, C.W. Liu, L.H. Luo, M. Lin, X.H. Zheng, C. Lin, Ceram. Int. 44, 4908–4914 (2018)

    Article  CAS  Google Scholar 

  17. X.M. Zhao, X.L. Chao, D. Wu, P.F. Liang, Z.P. Yang, J. Alloys Compd. 798, 669–677 (2019)

    Article  CAS  Google Scholar 

  18. Z.H. Dai, D.Y. Li, Z.J. Zhou, S. Zhou, W.G. Liu, J.J. Liu, X. Wang, X.B. Ren, Chem. Eng. J. 427, 131959 (2022)

    Article  CAS  Google Scholar 

  19. Q.Z. Chai, X.M. Zhao, X.L. Chao, Z.P. Yang, RSC Adv. 7, 28428–28437 (2017)

    Article  CAS  Google Scholar 

  20. X.S. Zhang, D. Yang, Z.Y. Yang, X.M. Zhao, Q.Z. Chai, X.L. Chao, L.L. Wei, Z.P. Yang, Ceram. Int. 42, 17963–17971 (2016)

    Article  CAS  Google Scholar 

  21. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849–1854 (2004)

    Article  CAS  Google Scholar 

  22. Z.Y. Liu, H.Q. Fan, B.L. Peng, J. Mater. Sci. 50, 7958–7966 (2015)

    Article  CAS  Google Scholar 

  23. J. Fu, R.Z. Zuo, Y.D. Xu, J.F. Li, M. Shi, J. Eur. Ceram. Soc. 37, 975–983 (2017)

    Article  CAS  Google Scholar 

  24. C. Lin, X. Wu, M. Lin, Y.P. Huang, J. Li, J. Alloys Compd. 706, 156–163 (2017)

    Article  CAS  Google Scholar 

  25. Q.Z. Chai, D. Yang, X.M. Zhao, X.L. Chao, Z.P. Yang, J. Am. Ceram. Soc. 101, 2321–2329 (2018)

    Article  CAS  Google Scholar 

  26. H. Xie, G.B. Liu, L. Yang, S.J. Pang, C.L. Yuan, X.W. Zhang, H. Wang, C.R. Zhou, J.W. Xu, J. Mater. Sci. Mater. Electron. 29, 19123–19129 (2018)

    Article  CAS  Google Scholar 

  27. P.D. Gio, T.T. Bau, N.V. Hoai, N.Q. Nam, J. Mater. Sci. Chem. Eng. 08, 1–11 (2020)

    CAS  Google Scholar 

  28. G.B. Hu, H.N. Liu, J.T. Wang, Y.B. Sun, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, J. Electron. Mater. 50, 968–977 (2020)

    Article  CAS  Google Scholar 

  29. A. Rahman, S. Park, Y. Min, G.T. Hwang, J.J. Choi, B.D. Hahn, K.H. Cho, S. Nahm, C.W. Ahn, J. Eur. Ceram. Soc. 40, 2989–2995 (2020)

    Article  CAS  Google Scholar 

  30. B.Y. Qu, H.L. Du, Z.T. Yang, J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  31. L. Gao, W.C. Zhou, F. Luo, D.M. Zhu, J. Wang, Ceram. Int. 43, 12731–12735 (2017)

    Article  CAS  Google Scholar 

  32. K. Li, F.L. Li, Y. Wang, K.W. Kwok, H.L.W. Chan, Mater. Chem. Phys. 131, 320–324 (2011)

    Article  CAS  Google Scholar 

  33. X.M. Zhao, Q.Z. Chai, B. Chen, X.L. Chao, Z.P. Yang, J. Am. Ceram. Soc. 101, 5127–5137 (2018)

    Article  CAS  Google Scholar 

  34. Z.M. Geng, K. Li, D.L. Shi, L.L. Zhang, X.Y. Shi, J. Mater. Sci. Mater. Electron. 26, 6769–6775 (2015)

    Article  CAS  Google Scholar 

  35. J.P. Sharma, D. Kumar, A.K. Sharma, Solid State Commun. 334–335, 114345 (2021)

    Article  CAS  Google Scholar 

  36. J. Zhang, L. Yang, J.W. Xu, C.R. Zhou, C.L. Yuan, H. Wang, G.H. Rao, J. Alloys Compd. 881, 160512 (2021)

    Article  CAS  Google Scholar 

  37. Y.J. Zhao, Y.J. Dai, H.P. Zhou, X.W. Zhang, J. Alloys Compd. 731, 39–43 (2018)

    Article  CAS  Google Scholar 

  38. K. Nakano, K. Oka, T. Watanuki, M. Mizumaki, A. Machida, A. Agui, H. Kim, J. Komiyama, T. Mizokawa, T. Nishikubo, Y. Hattori, S. Ueda, Y. Sakai, M. Azuma, Chem. Mater. 28, 6062–6067 (2016)

    Article  CAS  Google Scholar 

  39. Y.Y. Li, P.X. Xiong, G.C. Liu, M.Y. Peng, Z.J. Ma, Inorg. Chem. 60, 13510–13516 (2021)

    Article  CAS  Google Scholar 

  40. Z. Wang, H.S. Gu, Y.M. Hu, K. Yang, M.Z. Hu, D. Zhou, J.G. Guan, CrystEngComm 12(10), 3157–3162 (2010)

    Article  CAS  Google Scholar 

  41. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Mansour, Arab. J. Sci. Eng. 46, 5893–5906 (2020)

    Article  CAS  Google Scholar 

  42. A.M. El Nahrawy, A.M. Mansour, A.B. Abou Hammad, A.R. Wassel, Mater. Res. Express 6, 016404 (2018)

    Article  CAS  Google Scholar 

  43. J.F. Lin, Q.L. Lu, J. Xu, X. Wu, C. Lin, T.F. Lin, C. Chen, L.H. Luo, J. Am. Ceram. Soc. 102, 4710–4720 (2019)

    Article  CAS  Google Scholar 

  44. X.M. Zhao, X.L. Chao, D. Wu, P.F. Liang, Z.P. Yang, J. Am. Ceram. Soc. 102, 3498–3509 (2018)

    Article  CAS  Google Scholar 

  45. X. Liu, H.L. Du, X.C. Liu, J. Shi, H.Q. Fan, Ceram. Int. 42, 17876–17879 (2016)

    Article  CAS  Google Scholar 

  46. L. Cao, Y. Yuan, E.Z. Li, S.R. Zhang, Ceram. Int. 45, 5660–5667 (2019)

    Article  CAS  Google Scholar 

  47. L.X. Xie, J. Xing, Z. Tan, L.M. Jiang, Q. Chen, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, J. Alloys Compd. 758, 14–24 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (Project No. 61965007), Guangxi Nature Science Foundation, People’s Republic of China (Project No. 2018GXNSFDA281042) and Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), People’s Republic of China (Project No. 201007-Z).

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly participated in the data collection and experimental program exploration. Data collection, analysis and initial manuscript were completed by first author: HW. Revision and refinement of the manuscript was performed by the corresponding author: HW and the manuscript is published with the consent of all authors.

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Shi, S., Liu, X. et al. The Ba(Bi0.5Ta0.5)O3 modified (K0.5Na0.5)NbO3 lead-free transparent ferroelectric ceramics with high transmittance and excellent energy storage performance. J Mater Sci: Mater Electron 33, 16045–16055 (2022). https://doi.org/10.1007/s10854-022-08496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08496-z

Navigation