Skip to main content
Log in

Electronic properties of bilayer g-SiC3 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, using first-principles calculations based on density function theory, we systematically investigate the electronic structures and properties of the bilayer g-SiC3 systems. Among all three bilayer g-SiC3 systems considered here, the AA stacking (all C/Si atoms in upper SiC3 layer lie above the C/Si atoms in lower SiC3 layer) with an indirect bandgap is most stable. The bandgap calculated by PBE and HSE06 are 1.380 eV and 1.959 eV, respectively. Our results revealed that the bandgap could be modulated effectively by applying in-plane biaxial compressing/stretching or vertical strain along the ‘z’ axis. When the tensile stress reaches 3%, the bilayer AA g-SiC3 system changes from semiconductor to semimetal. Moreover, under vertical stretching of ∆d = 0.4 Å (d = 2.83 Å), the bilayer AA g-SiC3 turns from an indirect bandgap semiconductor to a direct bandgap semiconductor, which is attractive for realizing the nanoscale multi-functional device applications. Our results provide a theoretical understanding for future SiC3-based electronic nanodevices with controlled bandgaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: An emerging electronic material. Adv. Mater. 24, 5782–5825 (2012). https://doi.org/10.1002/adma.201201482

    Article  CAS  Google Scholar 

  2. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40

    Article  CAS  Google Scholar 

  3. R. Summary, 2D materials and van der Waals heterostructures. Appl. Phys. (2016). https://doi.org/10.1126/science.aac9439

    Article  Google Scholar 

  4. J.M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Electric Field Effect in Atomically Thin Carbon Films 306, 666–670 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-Dimens. Atom. Crys. 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  6. S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices. J. Mater. Sci.: Mater. Electron. 30, 13855–13868 (2019). https://doi.org/10.1007/s10854-019-01790-3

    Article  CAS  Google Scholar 

  7. M. Yang, S.W. Kim, S. Zhang, D.Y. Park, C.W. Lee, Y.H. Ko, H. Yang, Y. Xiao, G. Chen, M. Li, Facile and highly efficient fabrication of robust Ag nanowire-elastomer composite electrodes with tailored electrical properties. J. Mater. Chem. C. 6, 7207–7218 (2018). https://doi.org/10.1039/c8tc01691g

    Article  CAS  Google Scholar 

  8. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012). https://doi.org/10.1021/nn302422x

    Article  CAS  Google Scholar 

  9. Y.Y. Hui, X.F. Liu, W.J. Jie, N.Y. Chan, J.H. Hao, Y.T. Hsu, L.J. Li, W.L. Guo, S.P. Lau, Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet. ACS Nano (2013). https://doi.org/10.1021/nn4024834

    Article  Google Scholar 

  10. X.D. Li, S. Yu, S.Q. Wu, Y.H. Wen, S. Zhou, Z.Z. Zhu, Structural and electronic properties of superlattice composed of graphene and monolayer MoS2. J. Phys. Chem. C 117, 15347–15353 (2013). https://doi.org/10.1021/jp404080z

    Article  CAS  Google Scholar 

  11. S. Cahangirov, M. Topsakal, E. Aktürk, H. Šahin, S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.102.236804

    Article  CAS  Google Scholar 

  12. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, Ś Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223107–223109 (2010). https://doi.org/10.1063/1.3524215

    Article  CAS  Google Scholar 

  13. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.108.245501

    Article  CAS  Google Scholar 

  14. M. Tahir, P. Vasilopoulos, Electrically tunable magnetoplasmons in a monolayer of silicene or germanene. J. Phys.: Condens. Matter 27, 75303 (2015). https://doi.org/10.1088/0953-8984/27/7/075303

    Article  CAS  Google Scholar 

  15. P. Vogt, P. Capiod, M. Berthe, A. Resta, P. De Padova, T. Bruhn, G. Le Lay, B. Grandidier, Synthesis and electrical conductivity of multilayer silicone. Appl. Phys. Lett. 104(2), 021602 (2014). https://doi.org/10.1063/1.4861857

    Article  CAS  Google Scholar 

  16. G. Gao, N.W. Ashcroft, R. Hoffmann, The unusual and the expected in the Si/C phase diagram. J. Am. Chem. Soc. 135, 11651–11656 (2013). https://doi.org/10.1021/ja405359a

    Article  CAS  Google Scholar 

  17. T. Hussain, A.H. Farokh Niaei, D.J. Searles, M. Hankel, Three-Dimensional Silicon Carbide from Siligraphene as a High Capacity Lithium Ion Battery Anode Material. J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b06151

    Article  Google Scholar 

  18. F. Zheng, H. Dong, Y. Ji, Y. Li, Adsorption and catalytic decomposition of hydrazine on metal-free SiC3 siligraphene. Appl. Surf. Sci. 469, 316–324 (2019). https://doi.org/10.1016/j.apsusc.2018.11.002

    Article  CAS  Google Scholar 

  19. M. Houmad, M.H. Mohammed, R. Masrour, A. El Kenz, A. Benyoussef, Electronic and electrical properties of siligraphene (g-SiC3) in the presence of several strains. J. Phys. Chem. Solids 127, 231–237 (2019). https://doi.org/10.1016/j.jpcs.2018.12.016

    Article  CAS  Google Scholar 

  20. X. Qin, Y. Wu, Y. Liu, B. Chi, X. Li, Y. Wang, X. Zhao, Origins of Dirac cone formation in AB3 and A3B (A, B = C, Si, and Ge) binary monolayers. Scientific Reports. 7, 1–13 (2017). https://doi.org/10.1038/s41598-017-10670-x

    Article  CAS  Google Scholar 

  21. Y. Ding, Y. Wang, Geometric and electronic structures of two-dimensional SiC3 compound. J. Phys. Chem. C 118, 4509–4515 (2014). https://doi.org/10.1021/jp412633y

    Article  CAS  Google Scholar 

  22. M. Zhao, R. Zhang, Two-dimensional topological insulators with binary honeycomb lattices: SiC3 siligraphene and its analogs. Physical Review B - Condensed Matter and Materials Physics. 89, 1–8 (2014). https://doi.org/10.1103/PhysRevB.89.195427

    Article  CAS  Google Scholar 

  23. C. Pereyra Huelmo, P.A. Denis, Silicon carbide induced doping of graphene a new potential synthetic route for SiC3 siligraphene. J. Phys. Chem. C 123, 30341–30350 (2019). https://doi.org/10.1021/acs.jpcc.9b07978

    Article  CAS  Google Scholar 

  24. P.E. Blöchl, Projector augmented-wave method. Physical Review B. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  25. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B-Condensed Matter and Materials Physics. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  27. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Physical Review B. 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  28. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics (2010). https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  29. M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annual Review of Condensed Matter Physics. 1, 89–108 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  CAS  Google Scholar 

  30. X.K. Lu, T.Y. Xin, Q. Zhang, Q. Xu, T.H. Wei, Y.X. Wang, Versatile mechanical properties of novel g-SiC x monolayers from graphene to silicene A first-principles study. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aac337

    Article  Google Scholar 

  31. J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Journal of Chemical Physics 10.(1063/1), 2085170 (2005)

    Google Scholar 

  32. L. Stauffer, J.L. Bischoff, L. Kubler, D. Aubel, L. Simon, G. Garreau, C. Pirri, P. Sonnet, M. Stoffel, A. Selloni, A. De Vita, R. Car, Atomic structure of carbon-induced (formula presented) reconstruction as a Si-Si homodimer and C-Si heterodimer network. Physical Review B-Condensed Matter and Materials Physics. 64, 1–9 (2001). https://doi.org/10.1103/PhysRevB.64.035306

    Article  CAS  Google Scholar 

  33. J. Kim, J. Kim, S. Song, S. Zhang, J. Cha, K. Kim, H. Yoon, Y. Jung, K.W. Paik, S. Jeon, Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon 113, 379–386 (2017). https://doi.org/10.1016/j.carbon.2016.11.023

    Article  CAS  Google Scholar 

  34. M.L. Jin, S. Park, J.S. Kim, S.H. Kwon, S. Zhang, M.S. Yoo, S. Jang, H.J. Koh, S.Y. Cho, S.Y. Kim, C.W. Ahn, K. Cho, S.G. Lee, D.H. Kim, H.T. Jung, An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Adv. Mater. 30, 1–9 (2018). https://doi.org/10.1002/adma.201706851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities, China under Grant No. 2412019FZ037.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodan Li or Qiang Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, R., Li, X., Guan, Y. et al. Electronic properties of bilayer g-SiC3 system. J Mater Sci: Mater Electron 32, 1888–1896 (2021). https://doi.org/10.1007/s10854-020-04957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04957-5

Navigation