Skip to main content
Log in

First-Principles Study of Strain Engineered Electronic Properties of GeSe-SnS Hetero-bilayer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Vertical stacking of two dimensional (2D) materials is emerging as an exciting method for the design of next generation electronic and optoelectronic devices. Here, we employed first-principles calculations based on density functional theory to study the structural and electronic properties of the GeSe-SnS Van der Waals hetero-bilayer. Our results suggest that this hetero-bilayer is semiconducting in nature with a direct band gap of 0.9006 eV and also has an intrinsic type-II band alignment indicating an expectation for spontaneous electron-hole charge separation. The electronic responses of the hetero-bilayer are found to be sensitive and anisotropic to the applied strain. The direct band gap of the GeSe-SnS hetero-bilayer is tunable by strain within a considerable range (0.306–1.197 eV) and the transitions between direct–indirect band gap can repeatedly be obtained by applying compressive uniaxial and biaxial strains. The carrier effective masses of the hetero-bilayer can also be engineered by strain in a low mass range. These intriguing results suggest GeSe-SnS hetero-bilayer as a good candidate for applications in electronic and optoelectronic semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, Science 306(5696), 666 (2004).

    Article  Google Scholar 

  2. L. Wang, B. Wu, J. Chen, H. Liu, P. Hu and Y. Liu, Adv. Mater. 26(10), 1559 (2014).

    Article  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012).

    Article  Google Scholar 

  4. H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. Ye, Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen and Y. Zhang, Nat. Nano 9, 372 (2014).

  5. G.R. Bhimanapati, Z.M. Lin, V. Meunier, Y. Jung, J.J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones and J.A. Robinson ACS Nano 9(12), 11509 (2015)

    Article  Google Scholar 

  6. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly and J. Van Den Brink, Phys. Rev. B 76(7), 073103 (2007).

    Article  Google Scholar 

  7. D. Pierucci, H. Henck, J.P.C. Ávila, A. Balan, C.H. Naylor, G. Patriarche, Y.J. Dappe, M.G. Silly, F. Sirotti, A.T.C. Johnson, M.C. Asensio and A. Ouerghi Nano Lett. 16(7), 4054 (2016).

    Article  Google Scholar 

  8. C. Xu, J. Yuan, D. Wang and Y. Mao, Mater. Res. Express 6(3), 036305 (2018).

    Article  Google Scholar 

  9. A. Rodin, L.C. Gomes, A. Carvalho and A.C. Neto, Phys. Rev. B 93(4), 045431 (2016).

    Article  Google Scholar 

  10. P.Z. Hanakata, A. Carvalho, D.K. Campbell and H.S. Park, Phys. Rev. B 94(3), 035304 (2016).

    Article  Google Scholar 

  11. R. Haleoot, C. Paillard, T.P. Kaloni, M. Mehboudi, B. Xu, L. Bellaiche and S. Barraza-Lopez, Phys. Rev. Lett. 118(22), 227401 (2017).

    Article  Google Scholar 

  12. T. Rangel, B.M. Fregoso, B.S. Mendoza, T. Morimoto, J.E. Moore and J.B. Neaton, Phys. Rev. Lett. 119(6), 067402 (2017).

    Article  Google Scholar 

  13. L.C. Gomes and A. Carvalho, Phys. Rev. B 92(8), 085406 (2015).

    Article  Google Scholar 

  14. I. Appelbaum and P. Li, Phys. Rev. B 94(15), 155124 (2016).

    Article  Google Scholar 

  15. R. Fei, W. Li, J. Li and L. Yang, Appl. Phys. Lett. 107(17), 173104 (2015).

    Article  Google Scholar 

  16. M. Wu and X.C. Zeng, Nano Lett. 16(5), 3236 (2016).

    Article  Google Scholar 

  17. R. Fei, W. Kang and L. Yang, Phys. Rev. Lett. 117(9), 097601 (2016).

    Article  Google Scholar 

  18. L.C. Gomes, P. Trevisanutto, A. Carvalho, A. Rodin and A.C. Neto, Phys. Rev. B 94(15), 155428 (2016).

    Article  Google Scholar 

  19. A. Shafique and Y.H. Shin, Sci. Rep. 7(1), 506 (2017).

    Article  Google Scholar 

  20. T. Taher, R. Chakraborty, S. Ahmed and S. Subrina, 10th International Conference on Electrical and Computer Engineering (ICECE) pp. 1–4 (2018)

  21. J.R. Brent, D.J. Lewis, T. Lorenz, E.A. Lewis, N. Savjani, S.J. Haigh, G. Seifert, B. Derby and P. OBrien, J. Am. Chem. Soc. 137(39), 12689 (2015).

    Article  Google Scholar 

  22. Z. Tian, C. Guo, M. Zhao, R. Li and J. Xue, ACS Nano 11(2), 2219 (2017).

    Article  Google Scholar 

  23. Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu and J. Qiu, Chem. Mater. (2017).

  24. C. Xia, J. Du, W. Xiong, Y. Jia, Z. Wei and J. Li, J. Mater. Chem. A 5(26), 13400 (2017).

    Article  Google Scholar 

  25. B. Tong and L. Sham, Phys. Rev. 144(1), 1 (1966).

    Article  Google Scholar 

  26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, J. Phys. Condensed Mat. 21(39), 395502 (2009)

  27. J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).

    Article  Google Scholar 

  28. A.D. Becke, Phys. Rev. A 38(6), 3098 (1988).

    Article  Google Scholar 

  29. W.B. Zhang, C. Chen and P.Y. Tang, J. Chem. Phys. 141(4), 044708 (2014).

    Article  Google Scholar 

  30. W.B. Zhang, Q. Qu, P. Zhu and C.H. Lam, J. Mater. Chem. C 3(48), 12457 (2015).

    Article  Google Scholar 

  31. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13(12), 5188 (1976).

    Article  Google Scholar 

  32. Y. Cai, G. Zhang and Y.W. Zhang, J. Phys. Chem. C 119(24), 13929 (2015).

    Article  Google Scholar 

  33. W. Yu, Z. Zhu, S. Zhang, X. Cai, X. Wang, C.Y. Niu and W.B. Zhang, Appl. Phys. Lett. 109(10), 103104 (2016).

    Article  Google Scholar 

  34. X. Han, H. Stewart, S.A. Shevlin, C.R.A. Catlow and Z.X. Guo, Nano Lett. 14(8), 4607 (2014)

    Article  Google Scholar 

  35. L. Xu, M. Yang, S.J. Wang and Y.P. Feng, Phys. Rev. B 95(23), 235434 (2017).

    Article  Google Scholar 

  36. Y. Hu, S. Zhang, S. Sun, M. Xie, B. Cai and H. Zeng, Appl. Phys. Lett. 107(12), 122107 (2015).

    Article  Google Scholar 

  37. X. Peng, Q. Wei and A. Copple, Phys. Rev. B 90(8), 085402 (2014).

    Article  Google Scholar 

  38. H. Shi, H. Pan, Y.W. Zhang and B.I. Yakobson, Phys. Rev. B 87(15), 155304 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Subrina.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Taher, T., Chakraborty, R. et al. First-Principles Study of Strain Engineered Electronic Properties of GeSe-SnS Hetero-bilayer. J. Electron. Mater. 48, 6735–6741 (2019). https://doi.org/10.1007/s11664-019-07468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07468-0

Keywords

Navigation