Skip to main content

Advertisement

Log in

Composition-driven (Bi0.5Na0.5)TiO3-based ceramics as novel high-performance energy storage materials for capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ability of storing electrostatic energy for a capacitor is largely dependent on the energy storage performances of the material used in the electronic components. In this case, a composition-driven Bi0.5Na0.5TiO3-based system, (1−x)(0.84Bi0.5Na0.5TiO3−0.16Bi0.5K0.5TiO3)−xBi(Mg0.5Ti0.5)O3 (NTB-KBT-100xBMT, x = 0.04–0.14) was designed and the enhanced energy storage density and efficiency with good thermal insensitivity were confirmed. The introduction of BMT can induce the relaxor characteristic due to the deconstruction of the ferroelectric long-range order, leading to the increase in dielectric breakdown and the improved energy storage performances. Particularly, the NTB-KBT-8BMT ceramic exhibits a high stored energy density (Wtotal = 2.88 J/cm3) and recoverable energy density (Wrec = 2.42 J/cm3) with good energy efficiency (η = 84.0%) under 320 kV/cm, indicative of potential application for energy storage components. Moreover, the NTB-KBT-8BMT ceramic exhibits typical temperature-independent character in a wide temperature range from 30 to 140 °C due to broad diffused phase transition. It can be concluded that constructing relaxor ferroelectrics is an effective approach to design novel dielectrics for pulse power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Sun, Z. Wang, Y. Tian, G. Wang, W. Wang, M. Yang, X. Wang, F. Zhang, Y. Pu, Adv. Electron. Mater. 6, 1900698 (2019)

    Article  Google Scholar 

  2. H. Palneedi, M. Peddigari, G. Hwang, D. Jeong, J. Ryu, Adv. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  3. H. Qi, R. Zuo, J. Mater. Chem. A 7, 3971–3978 (2019)

    Article  CAS  Google Scholar 

  4. X.H. Hao, J. Adv. Dielect. 3, 1330001 (2013)

    Article  Google Scholar 

  5. D. Li, Z. Shen, Z. Li, W. Luo, F. Song, X. Wang, Z. Wang, Y. Li, J. Mater. Chem. C 8, 7650–7657 (2020)

    Article  CAS  Google Scholar 

  6. Z. Li, H. Liu, Z. Yao, J. Xie, X. Li, C. Diao, A. Ullah, H. Hao, M. Cao, Ceram. Int. 45, 22523–22527 (2019)

    Article  CAS  Google Scholar 

  7. D. Li, Z. Shen, Z. Li, W. Luo, X. Wang, Z. Wang, F. Song, Y. Li, J. Adv. Ceram. 9, 183–192 (2020)

    Article  CAS  Google Scholar 

  8. L. Zhang, Y. Pu, M. Chen, T. Wei, W. Keipper, R. Shi, X. Guo, R. Li, X. Peng, J. Eur. Ceram. Soc. 40, 71–77 (2020)

    Article  CAS  Google Scholar 

  9. Q. Xu, X. Huang, H. Liu, J. Mater. Sci.: Mater. Electron. 31, 9974–9981 (2020)

    Google Scholar 

  10. W. Cai, Q. Zhang, C. Zhou, R. Gao, S. Zhang, Z. Li, R. Xu, G. Chen, X. Deng, Z. Wang, C. Fu, J. Mater. Sci.: Mater. Electron. 31, 10512–10520 (2020)

    Google Scholar 

  11. L. Zhao, Q. Liu, J. Gao, S. Zhang, J. Li, Adv. Mater. 29, 1701824 (2017)

    Article  Google Scholar 

  12. M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, ACS Sustain. Chem. Eng. 6, 12755–12765 (2018)

    Article  CAS  Google Scholar 

  13. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  14. Z. Yan, D. Zhang, X. Zhou, H. Qi, H. Luo, K. Zhou, I. Abrahams, H. Yan, J. Mater. Chem. A 7, 10702–10711 (2019)

    Article  CAS  Google Scholar 

  15. A.P. Sharma, D.K. Pradhan, S.K. Pradhan, M. Bahoura, Sci. Rep. 9, 16809 (2019)

    Article  CAS  Google Scholar 

  16. Z. Dai, J. Xie, W. Liu, X. Wang, L. Zhang, Z. Zhou, J. Li, X. Ren, ACS Appl. Mater. Int. 12, 30289–30296 (2020)

    Article  CAS  Google Scholar 

  17. C. Yang, J. Qian, Y. Han, P. Lv, S. Huang, X. Cheng, Z. Cheng, J. Mater. Chem. A 7, 22366–22376 (2019)

    Article  CAS  Google Scholar 

  18. H. Wang, X. Jiang, X. Liu, R. Yang, Y. Yang, Q. Zheng, K.W. Kwok, D. Lin, Dalton Trans. 48, 17864–17873 (2019)

    Article  CAS  Google Scholar 

  19. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564–5567 (1999)

    Article  CAS  Google Scholar 

  20. J. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. Rossell, P. Yu, L. You, C.H. Wang, C.Y. Kuo, J. Heron, Z. Hu, R.J. Zeches, H. Lin, A. Tanaka, C. Chen, L. Tjeng, Y. Chu, R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011)

    Article  CAS  Google Scholar 

  21. M. Zhang, H. Yang, D. Li, L. Mab, Y. Lin, J. Mater. Chem. C 8, 8777–8785 (2020)

    Article  CAS  Google Scholar 

  22. W. Huang, Y. Chen, X. Li, G. Wang, N. Liu, S. Li, M. Zhou, X. Dong, Appl. Phys. Lett. 113, 203902 (2018)

    Article  Google Scholar 

  23. P. Chen, B. Chu, J. Eur. Ceram. Soc. 36, 81–88 (2016)

    Article  CAS  Google Scholar 

  24. X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13, 180 (2020)

    Article  CAS  Google Scholar 

  25. R. Jing, L. Jin, Y. Tian, Y. Huang, Y. Lan, J. Xu, Q. Hu, H. Du, X. Wei, D. Guo, J. Gao, F. Gao, Ceram. Int. 45, 21175–21182 (2019)

    Article  CAS  Google Scholar 

  26. Q. Yuan, G. Li, F. Yao, S. Cheng, Y. Wang, R. Ma, S. Mi, M. Gu, K. Wang, J. Li, H. Wang, Nano Energy 52, 203–210 (2018)

    Article  CAS  Google Scholar 

  27. Y. Qiu, Y. Lin, X. Liu, H. Yang, J. Alloys Compd. 797, 348–355 (2019)

    Article  CAS  Google Scholar 

  28. N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, J. Am. Ceram. Soc. 96, 3176–3182 (2013)

    Article  CAS  Google Scholar 

  29. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Nano Energy 67, 104264 (2020)

    Article  CAS  Google Scholar 

  30. T. Oikawa, S. Yasui, T. Watanabe, K. Ishii, Y. Ehara, H. Yabuta, T. Kobayashi, T. Fukui, K. Miura, H. Funakubo, Jpn. J. Appl. Phys. 52, 04CH09 (2013)

    Article  Google Scholar 

  31. J. Xie, H. Liu, Z. Yao, H. Hao, Y. Xie, Z. Li, M. Cao, S. Zhang, J. Mater. Chem. C 7, 13632–13639 (2019)

    Article  CAS  Google Scholar 

  32. J. Xie, Z. Yao, H. Hao, Y. Xie, Z. Li, H. Liu, M. Cao, J. Am. Ceram. Soc. 102, 3819–3822 (2019)

    Article  CAS  Google Scholar 

  33. Q. Hu, J. Bian, P.S. Zelenovskiy, Y. Tian, L. Jin, X. Wei, Z. Xu, V.Y. Shur, J. Appl. Phys. 124, 54101 (2018)

    Article  Google Scholar 

  34. J. Wang, Y. Li, N. Sun, J. Du, Q. Zhang, X. Hao, J. Eur. Ceram. Soc. 39, 255–263 (2019)

    Article  CAS  Google Scholar 

  35. D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Adv. Funct. Mater. 22, 2285–2294 (2012)

    Article  Google Scholar 

  36. Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, H. Fan, J. Alloys Compd. 663, 701–707 (2016)

    Article  CAS  Google Scholar 

  37. J. Kreiseldag, A.M. Glazerdag, G. Jonesddag, P.A. Thomasddag, L. Abello, G. Lucazeau, J. Phys.: Condens. Matter 12, 3267–3280 (2000)

    Google Scholar 

  38. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574–5580 (2015)

    Article  CAS  Google Scholar 

  39. Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai, J. Mater. Chem. C 7, 4072–4078 (2019)

    Article  CAS  Google Scholar 

  40. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    Article  CAS  Google Scholar 

  41. P. Butnoi, S. Manotham, P. Jaita, C. Randorn, G. Rujijanagul, J. Eur. Ceram. Soc. 38, 3822–3832 (2018)

    Article  CAS  Google Scholar 

  42. G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1–48 (2015)

    Article  CAS  Google Scholar 

  43. Y. Pu, L. Zhang, Y. Cui, M. Chen, ACS Sustain. Chem. Eng. 6, 6102–6109 (2018)

    Article  CAS  Google Scholar 

  44. J. Prendergast, E. Driscoll, E. Mullen, Microelectron. Reliab. 45, 973–977 (2005)

    Article  CAS  Google Scholar 

  45. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 42902 (2010)

    Article  Google Scholar 

  46. T. Mihara, H. Watanabe, Jpn. J. Appl. Phys. 34, 5664–5673 (1995)

    Article  CAS  Google Scholar 

  47. R. Moazzami, C. Hu, W. Shepherd, IEEE Trans. Electron Devices 39, 2044–2049 (1992)

    Article  CAS  Google Scholar 

  48. H. Chen, J. Lan, J. Chen, J. Lee, Appl. Phys. Lett. 69, 1713–1715 (1996)

    Article  CAS  Google Scholar 

  49. K. Han, N. Luo, Z. Chen, L. Ma, X. Chen, Q. Feng, C. Hu, H. Zhou, Y. Wei, F. Toyohisa, J. Eur. Ceram. Soc. 40, 3562–3568 (2020)

    Article  CAS  Google Scholar 

  50. A. Prado, J. Camargo, P. Öchsner, L. Ramajo, M. Castro, J. Electroceram. 44, 248–255 (2020)

    Article  CAS  Google Scholar 

  51. J. Ding, Y. Liu, Y. Lu, H. Qian, H. Gao, H. Chen, C. Ma, Mater. Lett. 114, 107–110 (2014)

    Article  CAS  Google Scholar 

  52. Z. Yu, Y. Liu, M. Shen, H. Qian, F. Li, Y. Lyu, Ceram. Int. 43, 7653–7659 (2017)

    Article  CAS  Google Scholar 

  53. J. Shi, X. Liu, W. Tian, J. Mater. Sci. Technol. 34, 2371–2374 (2018)

    Article  Google Scholar 

  54. Y. Wu, G. Wang, Z. Jiao, Y. Fan, P. Peng, X. Dong, RSC Adv. 9, 21355–21362 (2019)

    Article  CAS  Google Scholar 

  55. Q. Xu, H. Liu, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, M. Lanagan, RSC Adv. 6, 59280–59291 (2016)

    Article  CAS  Google Scholar 

  56. P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, J. Alloys Compd. 742, 683–689 (2018)

    Article  CAS  Google Scholar 

  57. P. Shi, L. Zhu, W. Gao, Z. Yu, X. Lou, X. Wang, Z. Yang, S. Yang, J. Alloys Compd. 784, 788–793 (2019)

    Article  CAS  Google Scholar 

  58. H. Yang, F. Yan, Y. Lin, T. Wang, Energy Technol. 6, 357–365 (2018)

    Article  CAS  Google Scholar 

  59. F. Yan, H. Yang, Y. Lin, T. Wang, Inorg. Chem. 56, 13510–13516 (2017)

    Article  CAS  Google Scholar 

  60. Y. Wu, Y. Fan, N. Liu, P. Peng, M. Zhou, S. Yan, F. Cao, X. Dong, G. Wang, J. Mater. Chem. C 7, 6222–6230 (2019)

    Article  CAS  Google Scholar 

  61. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Chem. Eng. J. 388, 124158 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jin, Y., Peng, F. et al. Composition-driven (Bi0.5Na0.5)TiO3-based ceramics as novel high-performance energy storage materials for capacitor applications. J Mater Sci: Mater Electron 32, 1842–1849 (2021). https://doi.org/10.1007/s10854-020-04952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04952-w

Navigation