Skip to main content
Log in

Role of Mn+2 ions in monitoring structural, optical, magnetic and electrical properties of manganese zinc ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline manganese zinc ferrite powders with chemical composition MnxZn1−xFe2O4 were prepared using the combustion method. The X-ray diffraction (XRD) technique was used to confirm the phase formation. Structural parameters such as lattice constant and density showed appreciable dependence on varying manganese concentrations in the ferrite material. The structural bond analysis was achieved using Fourier transform infrared (FTIR) spectroscopy. The surface morphology of nanopowders was analyzed using a scanning electron microscope (SEM). The particle size estimation was done using a transmission electron microscope (TEM) and was found to be in the narrow range of 15–25 nm. The dependence of saturation magnetization on manganese concentration was investigated using a vibrating sample magnetometer (VSM). The variation of electrical properties such as dielectric constant and dielectric loss was also studied and were seen to be administered by cationic distribution at the tetrahedral and the octahedral sites in the spinel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak, Structural characterization and anti-structure modeling of cobalt-substituted zinc ferrites. J. Alloy. Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  2. P.P. Naik, R.B. Tangsali, S.S. Meena, P. Bhatt, B. Sonaye, S. Sugur, Gamma radiation roused lattice contraction effects investigated by Mossbauer spectroscopy in nanoparticle Mn–Zn ferrite. Radiat. Phys. Chem. 102, 147–152 (2014)

    Article  CAS  Google Scholar 

  3. R.B. Waghmode, H.S. Jadhav, K.G. Kanade, A.P. Torane, Morphology-controlled synthesis of NiCo2O4nanoflowers on stainless steel substrates as high-performance supercapacitors. Mater. Sci. Energ. Technol. 2(3), 556–564 (2019)

    Google Scholar 

  4. G. Liu, J. Shao, Y. Gao, Z. Chen, Qu. Qunting, One-pot syntheses of spinel AB2O4 (A=Ni or Co, B=Mn or Fe) microspheres with different hollow interiors for super capacitors application. Chin. J. Chem. 35, 67–72 (2017)

    Article  CAS  Google Scholar 

  5. H.S. Jadhav, R.S. Kalubarme, C.N. Park, J. Kim, C.J. Park, Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale 6(17), 10071–10076 (2014)

    Article  CAS  Google Scholar 

  6. D.S. Baji, H.S. Jadhav, S.V. Nair, A.K. Rai, Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries. J. Solid State Chem. 262, 191–198 (2018)

    Article  CAS  Google Scholar 

  7. H.S. Jadhav, S.M. Pawar, A.H. Jadhav, G.M. Thorat, J.G. Seo, Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci. Rep. 6, 31120 (2016)

    Article  CAS  Google Scholar 

  8. G. Assat, C. Delacourt, D.A.D. Corte, J.-M. Tarascon, Practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163(14), A2965–A2976 (2016)

    Article  CAS  Google Scholar 

  9. N. Joshi, L.F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.-C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveira Jr., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens. Actuators B Chem. 257, 906–915 (2018)

    Article  CAS  Google Scholar 

  10. N. Joshi, L.F. da Silva, H. Jadhav, J.-C. M’Peko, B.B.M. Torres, K. Aguir, V.R. Mastelaro, O.N. Oliveira, One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv. 6, 92655–92662 (2016)

    Article  CAS  Google Scholar 

  11. E.M. Materón, R.S. Lima, N. Joshi, F.M. Shimizu, O.N. Oliveira Jr, in Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules. Graphene-Based Electrochemical Sensors for Biomolecules (2019) p. 321–336

  12. S.S. Hasolkar, P.P. Naik, Consequence of B-site substitution of rare earth (Gd+3) on electrical properties of manganese ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 13434–13446 (2020)

    Article  CAS  Google Scholar 

  13. A.B. Naik, P.P. Naik, S.S. Hasolkar, D. Naik, Structural, magnetic and electrical properties along with antifungal activity and adsorption ability of cobalt doped manganese ferrite nanoparticles synthesized using combustion route. Ceram. Int. 46(3), 21046–21055 (2020)

    Article  CAS  Google Scholar 

  14. S.S. Hasolkar, P.P. Naik, Effect of Gd+3 doping on structural, magnetic and electrical properties of Mn0.5Co0.5Fe2-xGdxO4nano-particles prepared using combustion synthesis. J. Alloys Compd. 823, 153605 (2020)

    Article  CAS  Google Scholar 

  15. P.P. Naik, S.S. Hasolkar, M.M. Kothawale, S.H.P. Keluskar, Altering saturation magnetization of manganese zinc ferrite nanoparticles by doping with rare earth Nd+3 ions. Phys. B Condens. Matter 584, 412111 (2020)

    Article  CAS  Google Scholar 

  16. K. Shetty, L. Renuka, H.P. Nagaswarup, H. Nagabhushana, K.S. Anantharaju, D. Rangappa, S.C. Prashantha, K. Ashwini, A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: morphology, impedance, and photocatalytic studies. Mat. Today Proc. 4, 11806–11815 (2017)

    Article  Google Scholar 

  17. P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mat. Chem. Phys. 191, 215–224 (2017)

    Article  CAS  Google Scholar 

  18. Y. Sun, C. Yan, J. Xie, D. Yan, Hu. Ke, S. Huang, Yu. Jianping Liu, N.G. Zhang, F. Xiong, High-performance worm-like Mn−Zn ferrite theranosticnanoagents and the application on tumortheranostics. ACS Appl. Mat. Interfaces 11(33), 29536–29548 (2019)

    Article  CAS  Google Scholar 

  19. S.F. Mansour, O.M. Hemeda, M.A. Abdo, W.A. Nada, Improvement of the magnetic and dielectric behavior of hard/soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    Article  CAS  Google Scholar 

  20. S. He, H. Zhang, Y. Liu, F. Sun, X. Yu, X. Li, L. Zhang, L. Wang, K. Mao, G. Wang, Y. Lin, Z. Han, R. Sabirianov, H. Zeng, Maximizing specific loss power for magnetic hyperthermia by hard-soft ferrite. Small 14, 1–9 (2018)

    Google Scholar 

  21. J.M. Kwon, J.-H. Kim, S.-H. Kang, C.-J. Choi, J.A. Rajesh, K.-S. Ahn, Facile hydrothermal synthesis of cubic spinel AB2O4 type MnFe2O4nanocrystallites and their electrochemical performance. Appl. Surf. Sci. 413, 83–91 (2017)

    Article  CAS  Google Scholar 

  22. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on Mn–Zn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020)

    Article  CAS  Google Scholar 

  23. M.A. Ahmed, K.E. Rady, M.S. Shams, Enhancement of electric and magnetic properties of Mn–Zn ferrite by Ni–Ti ions substitution. J. Alloy. Compd. 622, 269–275 (2015)

    Article  CAS  Google Scholar 

  24. P.P. Naik, R.B. Tangsali, Enduring effect of rare earth (Nd3+) doping and gamma-radiation on electrical properties of nanoparticle manganese zinc ferrite. J. Alloy. Compd. 723, 266–275 (2017)

    Article  CAS  Google Scholar 

  25. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)

    Article  CAS  Google Scholar 

  26. S. Sakurai, S. Sasaki, M. Okube, H. Ohara, T. Toyoda, Cation distribution and valence state in Mn–Zn ferrite examined by synchrotron X-rays. Phys. B 403, 3589–3595 (2008)

    Article  CAS  Google Scholar 

  27. A. Luchechko, O. Kravets, Novel visible phosphors based on MgGa2O4–ZnGa2O4 solid solutions with spinel structure co-doped with Mn2+ and Eu3+ ions. J. Lumin. 192, 11–16 (2017)

    Article  CAS  Google Scholar 

  28. A. Sinha, A. Dutta, Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: a study on effect of ionic radii of dopants. J. Phys. Chem. Solids 145, 109534 (2020)

    Article  CAS  Google Scholar 

  29. S.S.R. Inbanathan, V. Vaithyanathan, A. Chelvane, G. Markandeyulu, K. Kamala Bharathi, Mössbauer studies and enhanced electrical properties of R (R=Sm, Gd, and Dy) doped Ni ferrite. J. Magn. Magn. Mater. 353, 41–46 (2014)

    Article  CAS  Google Scholar 

  30. D. Liu, S. Gao, R. Jin, F. Wang, X. Chu, T. Gao, Y. Wang, Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol–gel synthesis. Chin. Phys. B 28, 057503 (2019)

    Article  CAS  Google Scholar 

  31. R. Jabbar, S.H. Sabeeh, A.M. Hameed, Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mat. 494 (2020)

  32. P. Mathur, A. Thakur, M. Singh, Processing of high density manganese zinc nanoferrites by co-precipitation method. ZeitschriftfürPhysikalischeChemie 221, 887–895 (2007)

    CAS  Google Scholar 

  33. P. Mathur, A. Thakur, M. Singh, Study of low temperature sinterednanocrystalliteMn–Cu–Zn ferrite prepared by co-precipitation method. Mod. Phys. Lett. B 21, 1425–1430 (2007)

    Article  CAS  Google Scholar 

  34. D. Makovec, M. Drofenik, A. Žnidaršič, Hydrothermal synthesis of manganese zinc ferrite powders from oxides. J. Am. Ceram. Soc. 82, 1113–1120 (2004)

    Article  Google Scholar 

  35. D.K. Agrawal, Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3, 480–485 (1998)

    Article  CAS  Google Scholar 

  36. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Synthesis, optical and magnetic properties of pure and Co doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mat. 349, 249–258 (2014)

    Article  CAS  Google Scholar 

  37. A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattice. Microst. 64, 118–131 (2013)

    Article  CAS  Google Scholar 

  38. Y. Ying, Y. Gong, D. Liu, W. Li, J. Yu, L. Jiang, S. Che, Effect of MoO3 addition on the magnetic properties and complex impedance of Mn–Zn ferrites with high Bs and high initial permeability. J. Supercond. Novel Magn. 30, 2129–2134 (2017)

    Article  CAS  Google Scholar 

  39. P.P. Naik, R.B. Tangsali, S.S. Meena, P. Bhatt, B. Sonaye, S. Sugur, Radiation stimulated permanent alterations in structural and electrical properties of core-shell Mn–Zn ferrite nanoparticles. J. Nano Res. 24, 194–202 (2013)

    Article  CAS  Google Scholar 

  40. P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Enrichment of magnetic alignment stimulated by γ-radiation in core-shell type nanoparticle Mn–Zn ferrite. AIPConf. Proc. 1512, 354 (2013)

    CAS  Google Scholar 

  41. V. Tsakaloudi, V. Zaspalis, Synthesis of a low loss Mn–Zn ferrite for power applications. J. Magn. Magn. Mater. 400, 307–310 (2016)

    Article  CAS  Google Scholar 

  42. R.J. Joseyphus, A. Narayanasamy, K. Shinoda, B. Jeyadevan, K. Tohji, Synthesis and magnetic properties of the size-controlled Mn–Zn ferrite nanoparticles by oxidation method. J. Phys. Chem. Solid 67, 1510–1517 (2006)

    Article  CAS  Google Scholar 

  43. P. Bera, R. V. Lakshmi, B. H. Prakash, K. Tiwari, A. Shukla, A. K. Kundu, K. Biswas, H. Barshilia, Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe2O4 and Co0.5M0.5Fe2O4 (M = Mn, Ni, and Zn). Phys. Chem. Chem. Phys. (2020). https://doi.org/10.1039/D0CP03161E

  44. L. Nalbandian, A. Delimitis, V.T. Zaspalis, E.A. Deliyanni, D.N. Bakoyannakis, E.N. Peleka, Hydrothermally prepared nanocrystallineMn–Zn ferrites: synthesis and characterization. J. MicroporousMesoporous Mater. 114, 465–473 (2008)

    Article  CAS  Google Scholar 

  45. C. Rath, S. Anand, R.P. Das, K.K. Sahu, S.D. Kulkarni, S.K. Date, N.C. Mishra, Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosizeMn–Zn ferrite. J. Appl. Phys. 91, 2211 (2002)

    Article  CAS  Google Scholar 

  46. T.T. Sriniwasan, C.M. Srivastava, N. Venkataramani, M.J. Patni, Infrared absorption in spinel ferrites. Bull. Mater. Sci. 6(6), 1063–1067 (1984)

    Article  Google Scholar 

  47. M.A. Ahmed, S.T. Bishay, S.I. El-dek, G. Omar, Effect of Ni substitution on, the structural and transport properties of NixMn0.8_xMg0.2Fe2O4; 0.0 6 × 6 0.40, ferrite. J. Alloys Compd. 509, 805–808 (2011)

    Article  CAS  Google Scholar 

  48. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behavior of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  49. R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)

    Article  CAS  Google Scholar 

  50. H. Jalili, B. Aslibeiki, A. GhotbiVarzaneh, V.A. Chernenko, The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein J. Nanotechnol. 10, 1348–1359 (2019)

    Article  CAS  Google Scholar 

  51. S. Gaba, A. Kumar, P.S. Rana, M. Arora, Influence of La3+ ion doping on physical properties of magnesium nanoferrites for microwave absorption application. J. Magn. Magn. Mater. 460, 69–77 (2018)

    Article  CAS  Google Scholar 

  52. W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9, 1602 (2019)

    Article  CAS  Google Scholar 

  53. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  54. M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43, 5524–5533 (2017)

    Article  CAS  Google Scholar 

  55. U. Ghodake, R.C. Kambale, S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceram. Int. 43, 1129–1134 (2017)

    Article  CAS  Google Scholar 

  56. M. Arshad, A. Maqsood, I. Gul, M. Anis-Ur-Rehman, Fabrication, electrical and dielectric characterization of Cd-Ni nanoferrites. Mat. Res. Bull. 87, 177–185 (2017)

    Article  CAS  Google Scholar 

  57. K.W. Wagner, ZurTheorie der unvollkommenenDielektrika. AnnalenDerPhysik. 345, 817–855 (1913)

    Google Scholar 

  58. X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chenc, H. Cao, G. Wu, Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 100404 (2020)

    Article  Google Scholar 

  59. X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang, X. Liu, B. Wang, G. Wu, Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020)

    Article  CAS  Google Scholar 

  60. T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, Hierarchical composite of biomass-derived magnetic carbon framework and phytic acid doped polyaniline with prominent electromagnetic wave absorption capacity. J. Mat. Sci. Technol. (2020). https://doi.org/10.1016/j.jmst.2020.06.046

    Article  Google Scholar 

  61. Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 420, 125951 (2020)

    Article  CAS  Google Scholar 

  62. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol–gel route. J. Magn. Magn. Mat. 466, 238–251 (2018)

    Article  CAS  Google Scholar 

  63. M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu, Y. Dong, B. Xu, G. Wu, Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mat. Technol. 26, e00219 (2020)

    CAS  Google Scholar 

  64. H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen, C. Zhang, X. Liu, Wu. Guanglei, In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B 199, 108261 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav P. Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, P.P., Hasolkar, S.S., Keluskar, S. et al. Role of Mn+2 ions in monitoring structural, optical, magnetic and electrical properties of manganese zinc ferrite nanoparticles. J Mater Sci: Mater Electron 32, 25840–25851 (2021). https://doi.org/10.1007/s10854-020-04945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04945-9

Navigation