Skip to main content
Log in

Effect of MoO3 Addition on the Magnetic Properties and Complex Impedance of Mn–Zn Ferrites with High B s and High Initial Permeability

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Mn–Zn ferrites with high initial permeability (μ i) and high saturation magnetic flux density (B s) were successfully synthesized by using a conventional ceramic processing route with addition of MoO3. The structure, morphology, magnetic properties, and complex impedance of all samples were investigated by X-ray diffraction, scanning electron microscopy, DC magnetic instrument, and precision LCR meter. The addition of MoO3 promotes the growth of larger and more uniform grains and therefore enhances the μ i. Meanwhile, it improves the density and hence the B s. Through the analysis of complex impedance spectra by an equivalent circuit model, it is demonstrated that MoO3 mainly exists at grain boundaries and improves the impedance in a wide frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drofenik, M., žnidaršič, A., Makovec, D.: Use of the retarded solution-reprecipitation process to attain a higher initial permeability in MnZn ferrites. J. Am. Ceram. Soc. 86, 1601–1604 (2003)

    Article  Google Scholar 

  2. Gotoh, S., Otake, T., Fukuda, Y., Togawa, J.: High performance MnZn ferrites for transformer core used in forward mode switching power supply. JFE Techn. Rep. 16, (2011)

  3. Rodrigues, A., Gomes, D., Araújo, J., Melo, D., Oliveira, N., Braga, R.: Nanoferrites of nickel doped with cobalt: Influence of Co 2+ on the structural and magnetic properties. J. Magn. Magn. Mater. 374, 748–754 (2015)

    Article  ADS  Google Scholar 

  4. Shokrollahi, H., Janghorban, K.: Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater Sci Eng: B 141, 91–107 (2007)

    Article  Google Scholar 

  5. Wang, S.-F., Wang, Y.-R., Yang, T. C., Wang, P.-J., Lu, C.-A.: Densification and properties of fluxed sintered NiCuZn ferrites. J Magn Magn Materx 217, 35–43 (2000)

    Article  ADS  Google Scholar 

  6. Aiping, H., Huahui, H., Zekun, F.: Effects of SnO2 addition on the magnetic properties of manganese zinc ferrites. J Magn Magn Mater 301, 331–335 (2006)

    Article  ADS  Google Scholar 

  7. Shokrollahi, H.: Magnetic properties and densification of manganese–zinc soft ferrites (Mn1−x Zn x4Fe2O4) doped with low melting point oxides. J. Magn. Magn. Mater. 320, 463–474 (2008)

  8. Jain, G. C., Das, B. K., Goel, N. C.: Effect of MoO3 addition on the grain growth kinetics of a manganese zinc ferrite. J. Am. Ceram. Soc. 62, 79–85 (1979)

    Article  Google Scholar 

  9. Matsuo, Y., Ono, K., Ishikura, M., Sasaki, I.: Effects of MoO3 addition on manganese zinc ferrites. IEEE Trans. Magn. 33, 3751–3753 (1997)

    Article  ADS  Google Scholar 

  10. Zaspalis, V., Antoniadis, E., Papazoglou, E., Tsakaloudi, V., Nalbandian, L., Sikalidis, C.: The effect of Nb2O5 dopant on the structural and magnetic properties of MnZn-ferrites. J. Magn. Magn. Mater. 250, 98–109 (2002)

    Article  ADS  Google Scholar 

  11. Zaspalis, V., Tsakaloudi, V., Papazoglou, E.: Relation between firing conditions grain boundary structure and magnetic properties in polycrystalline MnZn-ferrites. J. Electroceram. 11, 107–117 (2003)

    Article  Google Scholar 

  12. Negi, N., Sharma, A., Shah, J., Kotnala, R.: Investigation on impedance response, magnetic and ferroelectric properties of 0.20 (Co1−x Zn x Fe2−y Mn y O4)–0.80 (Pb0.70Ca0.30TiO3) magnetoelectric composites. Mater. Chem. Phys. 148, 1221–1229 (2014)

    Article  Google Scholar 

  13. Töpfer, J., Kahnt, H., Nauber, P., Senz, S., Hesse, D.: Microstructural effects in low loss power ferrites. J. Eur. Ceram. Soc. 25, 3045–3049 (2005)

    Article  Google Scholar 

  14. Arcos, D., Vazquez, M., Valenzuela, R., Vallet-Regi, M.: Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14, 861–865 (1999)

    Article  ADS  Google Scholar 

  15. Fan, J., Sale, F.: The microstructures, magnetic properties and impedance analysis of Mn–Zn ferrites doped with B2O3. J. Eur. Ceram. Soc. 20, 2743–2751 (2000)

    Article  Google Scholar 

  16. Li, L., Lan, Z., Yu, Z., Sun, K., Ji, H.: Influence of quencher on microstructure and magnetic properties of manganese-zinc ferrites. J. Magn. Magn. Mater. 318, 39–43 (2007)

  17. Su, Z., Chang, H., Wang, X., Sokolov, A. S., Hu, B., Chen, Y., Harris, V. G.: Low loss factor Co2Z ferrite composites with equivalent permittivity and permeability for ultra-high frequency applications. Appl. Phys. Lett. 105, 062402 (2014)

    Article  ADS  Google Scholar 

  18. Su, Z., Li, Q., Wang, X., Hu, B., Feng, Z., Chen, Y., Harris, V. G.: Tunable permittivity and permeability of low loss Z + Y-type ferrite composites for ultrahigh frequency applications. J. Appl. Phys. 117, 17E506 (2015)

    Article  Google Scholar 

  19. Goldman, A.: Modern ferrite technollgy (the 2nd edition), Springer (2005)

  20. Ott, G., Wrba, J., Lucke, R.: Recent developments of Mn–Zn ferrites for high permeability applications. J. Magn. Magn. Mater. 254–255, 535–537 (2003)

    Article  Google Scholar 

  21. Kazimierczuk, M.K.: High-frequency magnetic components. Wiley (2009)

  22. Batoo, K. M., Kumar, S., Lee, C. G.: Study of AC impedance spectroscopy of Al doped MnFe2−2x Al2x O4. J. Alloys Compd. 480, 596–602 (2009)

  23. Grchev, T., Cvetkovska, M.: Electrochemically initiated (co)polymerization of acrylamide and acrylonitrile on a steel cathode—electrochemical and impedance study. J. Appl. Electrochem. 19, 434–442 (1989)

    Article  Google Scholar 

  24. Rahman, M. A., Hossain, A. A.: Electrical transport properties of Mn–Ni–Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 025803 (2014)

    Article  ADS  Google Scholar 

  25. Syue, M.-R., Wei, F.-J., Chou, C.-S., Fu, C.-M.: Magnetic, dielectric, and complex impedance properties of nanocrystalline Mn–Zn ferrites prepared by novel combustion method. Thin Solid Films 519, 8303–8306 (2011)

    Article  ADS  Google Scholar 

  26. Gonchar, A., Katynkina, S., Letyuk, L., Ryabov, I.: The influence of the microstructure parameters on the magnetic losses in soft magnetic ferrites for television engineering. J. Magn. Magn. Mater. 215, 224–226 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China through grant no. 11204270 and the Zhejiang Provincial Natural Science Foundation of China through grant no. LQ12A04003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglei Che.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Y., Gong, Y., Liu, D. et al. Effect of MoO3 Addition on the Magnetic Properties and Complex Impedance of Mn–Zn Ferrites with High B s and High Initial Permeability. J Supercond Nov Magn 30, 2129–2134 (2017). https://doi.org/10.1007/s10948-017-4002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4002-z

Keywords

Navigation