Skip to main content
Log in

Critical positive temperature coefficient of resistivity of Li/Y co-doped ZnO ceramics modified by Cr-ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO-based ceramics doped with Li/Y and modified by various contents of Cr-ions, (Zn0.9475Y0.0025Li0.05)1-xCrxO (0 ≤ x ≤ 0.025), were prepared by a wet chemical route followed by a traditional ceramic sintering technology. The effect of Cr-ion content on the electronic conductivity and resistance–temperature characteristics of the prepared ceramics was investigated. All the ceramics have hexagonal wurtzite ZnO structure, and exhibit critical positive temperature coefficient of resistivity (C-PTCR) effect. With various contents of Cr-ions, the maximum temperature coefficient of resistivity (TCR) reaches 61.1%·°C−1 or the resistivity jump log(ρmax/ρmin) is up to 4.74. The critical transition temperature of resistivity can be adjusted in the temperature range of 76–147 °C for different various contents of Cr-ions. The complex impedance analysis shows that the C-PTCR effect of the ZnO ceramics resulted from both grain effect and grain boundary effect. According to the analysis of the dielectric temperature spectra, the ZnO-based ceramics have ferroelectricity at room temperature, and the ferroelectric–paraelectric transition around the critical transition temperature of resistivity during the temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Takeda, Y. Hoshi, T. Kinoshita, T. Shishido, T. Nishida, T. Shiosaki, Fabrication of lead-free and high Tc BaTiO3-based thermistor ceramics using deoxidizing effect of oxygen-containing α-zirconium. Ceram. Int. 34, 2073–2077 (2008)

    Article  CAS  Google Scholar 

  2. S. Leng, G. Li, L. Zheng, W. Shi, Y. Zhu, Effect of donor concentration on the PTCR behavior of Y-doped BaTiO3-(Bi1/2Na1/2)TiO3 ceramics. J. Mater. Sci.: Mater. Electron. 24, 431–435 (2012)

    Google Scholar 

  3. C.L. Yuan, X.Y. Liu, C.R. Zhou, J.W. Xu, Y. Yang, Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc = 155 °C. Chin. Phys. B 20, 048701 (2011)

    Article  Google Scholar 

  4. P.H. Xiang, H. Takeda, T. Shiosaki, High Tc lead-free BaTiO3–(Bi1/2Na1/2)TiO3 positive temperature coefficient of resistivity ceramics with electrically heterogeneous structure. Appl. Phys. Lett. 91, 162904 (2007)

    Article  Google Scholar 

  5. W. Huo, Y. Qu, Effects of Bi1/2Na1/2TiO3 on the curie temperature and the PTC effects of BaTiO3-based positive temperature coefficient ceramics. Sens. Actuator A 128, 265–269 (2006)

    Article  CAS  Google Scholar 

  6. L. Yan, Q. Fu, M. Humayun, D. Zhou, M. Wang, G. Wang, X. Gao, Z. Zheng, W. Luo, High-performance PTCR ceramics with extremely low resistivity for multilayer chip thermistor application. Ceram. Int. 46, 6621–6627 (2020)

    Article  CAS  Google Scholar 

  7. L. Yan, Q. Fu, D. Zhou, M. Wang, H. Zu, G. Wang, Z. Zheng, W. Luo, Extra high temperature coefficient in semiconducting BaTiO3-(Bi0.5Na0.5) TiO3-SrTiO3 ceramics. Ceram. Int. 45, 2185–2193 (2019)

    Article  CAS  Google Scholar 

  8. P. Pfalzer, G. Obermeier, M. Klemm, S. Horn, M.L. Denboer, Structural precursor to the metal-insulator transition in V2O3. Phys. Rev. B 73, 144106 (2006)

    Article  Google Scholar 

  9. J. Wang, H. Zhang, Z. Ma, Y. Zhang, Z. Li, Abnormal resistivity-temperature characteristic in fluorite type Bi/K-substituted ceria ceramics. J. Mater. Sci.: Mater. Electron. 27, 6419–6424 (2016)

    CAS  Google Scholar 

  10. M. Ashokkumar, S. Muthukumaran, Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. J. Magn. Magn. Mater. 374, 61–66 (2015)

    Article  CAS  Google Scholar 

  11. S. Das, S. Das, S. Sutradhar, Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram. Int. 43, 6932–6941 (2017)

    Article  CAS  Google Scholar 

  12. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  13. H.H. Hng, P.L. Chan, Effects of MnO2 doping in V2O5-doped ZnO varistor system. Mater. Chem. Phys. 75, 61–66 (2002)

    Article  CAS  Google Scholar 

  14. M. Saito, S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 1, 280–283 (2008)

    Article  CAS  Google Scholar 

  15. J. Jiang, Z. Mu, H. Xing, Q. Wu, X. Yue, Y. Lin, Insights into the synergetic effect for enhanced UV/visible-light activated photodegradation activity via Cu-ZnO photocatalyst. Appl. Surf. Sci. 478, 1037–1045 (2019)

    Article  CAS  Google Scholar 

  16. P. Li, H. Zhang, C. Gao, G. Jiang, Z. Li, Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. J. Mater. Sci.: Mater. Electron. 30, 19598–19608 (2019)

    CAS  Google Scholar 

  17. S. Li, H. Zhang, S. Leng, Z. Yang, J. Shao, Z. Li, Characterization of temperature induced resistivity jump in Li/Y/Cr co-doped ZnO ceramics. J. Mater. Sci.: Mater. Electron. 29, 10969–10975 (2018)

    CAS  Google Scholar 

  18. D.S. Smith, N. Ghayoub, I. Charissou, O. Bellon, P. Abélard, Transient thermal gradients in barium titanate positive temperature coefficient (PTC) thermistors. J. Am. Ceram. Soc. 81, 1789–1796 (1998)

    Article  CAS  Google Scholar 

  19. E.J. Abram, D.C. Sinclair, A.R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceram. 10, 165–177 (2003)

    Article  CAS  Google Scholar 

  20. T. Shimada, K. Touji, Y. Katsuyama, H. Takeda, T. Shiosaki, Lead free PTCR ceramics and its electrical properties. J. Eur. Ceram. Soc. 27, 3877–3882 (2007)

    Article  CAS  Google Scholar 

  21. Y. Pu, H. Wu, J. Wei, Influence of doping BiYO3 and Nb2O5 on PTCR characteristics of BaTiO3 thermistor ceramics. Sens. Actuator A 173, 158–162 (2012)

    Article  CAS  Google Scholar 

  22. M.K. Gupta, B. Kumar, Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods. J. Alloy. Compd. 509, L208–L212 (2011)

    Article  CAS  Google Scholar 

  23. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, 2D porous nanosheets of Y-doped ZnO for dielectric and ferroelectric applications. J. Mater. Sci.: Mater. Electron. 29, 13818–13832 (2018)

    CAS  Google Scholar 

  24. M.K. Gupta, N. Sinha, B. Kumar, Dielectric studies and band gap tuning of ferroelectric Cr-doped ZnO nanorods. J. Appl. Phys. 112, 014303 (2012)

    Article  Google Scholar 

  25. J. Dhananjay, S.B. Nagaraju, Krupanidhi, Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation. J. Appl. Phys. 101, 104104 (2007)

    Article  Google Scholar 

  26. Y.C. Yang, C.F. Zhong, X.H. Wang, B. He, S.Q. Wei, F. Zeng, F. Pan, Room temperature multiferroic behavior of Cr-doped ZnO films. J. Appl. Phys. 104, 064102 (2008)

    Article  Google Scholar 

  27. A. Onodera, Novel ferroelectricity in II-VI semiconductor ZnO. Ferroelectrics 267, 131–137 (2002)

    Article  CAS  Google Scholar 

  28. D. Kagami, M. Takesada, A. Onodera, H. Sstoh, Photoinduced effect in Li-doped ZnO studied by raman scattering. J. Korean Phys. Soc. 59, 2532–2536 (2011)

    Article  CAS  Google Scholar 

  29. M.D. Glinchuk, E.V. Kirichenko, V.A. Stephanovich, B.Y. Zaulychny, Nature of ferroelectricity in nonperovskite semiconductors like ZnO:Li. J. Appl. Phys. 105, 104101 (2009)

    Article  Google Scholar 

  30. S. Massidda, R. Resta, M. Posternak, A. Baldereschi, Polarization and dynamical charge of ZnO within different one-particle schemes. Phys. Rev. B 52, 16977–16980 (1995)

    Article  CAS  Google Scholar 

  31. S.S. Lee, C.K. Yoon, S.H. Song, B. Ziaie 2014 An electret-biased resonant radiation sensor, IEEE, 27th International conference on micro electro mechanical systems (MEMS), 704–708

  32. H.O. Jacobs, G.M. Whitesides, Submicrometer patterning of charge in thin-film electrets. Science 291, 1763–1766 (2001)

    Article  CAS  Google Scholar 

  33. F. Bahri, H. Khemakhem, Raman and dielectric investigation of (Ba0.9-xSrxCa0.1) (Ti0.8Zr0.2) O3 ferroelectric ceramics. Ceram. Int. 40, 7909–7913 (2014)

    Article  CAS  Google Scholar 

  34. S.C. Abrahams, J.L. Bernstein, Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. A 25, 1233–1236 (1969)

    Article  CAS  Google Scholar 

  35. A.D. Corso, M. Posternak, R. Resta, A. Baldereschi, Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B 50, 10715–10721 (1994)

    Article  Google Scholar 

  36. A. Onodera, N. Tamaki, H. Satoh, H. Yamashita, X-Ray study of ferroelectric phase transition by Li-substitution in semiconducting ZnO. Ferroelectrics 217, 9–15 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the research funding from the Hunan Wedid Materials Technology Co., Ltd., China (No. 738010241), the National Natural Science Foundation of China (No. 51767021), the Foundation of the Department of Science and Technology of Guizhou province (No. JC[2018]1165), and the Foundation of the Department of Education of Guizhou province (No. KY[2018]030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Leng, S., Zhang, H. et al. Critical positive temperature coefficient of resistivity of Li/Y co-doped ZnO ceramics modified by Cr-ions. J Mater Sci: Mater Electron 32, 1691–1702 (2021). https://doi.org/10.1007/s10854-020-04938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04938-8

Navigation