Skip to main content
Log in

New negative temperature coefficient ceramics in Ca1−xYxCu3Ti3.9Zr0.1O12 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The new negative temperature coefficient (NTC) ceramics based on Ca1−xYxCu3Ti3.9Zr0.1O12 (x = 0, 0.01, 0.03, 0.05) compositions have been successfully synthesized by traditional solid-state method. The results of X-ray diffraction show that the major phase of all samples is CaCu3Ti4O12 (CCTO) with body-centered cubic structure. Scanning electron microscope images confirm that Y3+ doping can inhibit the growth of grains. X-ray photoelectron spectroscopy analysis fully demonstrates the coexistence of Cu+/Cu2+ and Ti3+/Ti4+ ions in ceramic samples, and also proves that with the increase of Y3+ content, the concentration of Cu+ and Ti3+ ions increases, which is the main reason for the decrease of resistivity. The resistivity of all ceramic specimens decreases with the increase of temperature, which is consistent with NTC behavior. The obtained values of ρ25, B200/500, and Ea of the sintered samples are in the range of 2.76 × 107–1.10 × 108 Ω cm, 6633–6755 K, and 0.572–0.582 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  CAS  Google Scholar 

  2. C. Homes, T. Vogt, S. Shapiro, S. Wakimoto, A. Ramirez, Science 293, 673 (2001)

    Article  CAS  Google Scholar 

  3. M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, J. Mater. Chem. 19, 5916 (2009)

    Article  CAS  Google Scholar 

  4. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  CAS  Google Scholar 

  5. B. Xu, J. Zhang, Z. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)

    Article  CAS  Google Scholar 

  6. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, J.C. Li, M.L. Zhao, Appl. Phys. Lett. 91, 042905 (2007)

    Article  Google Scholar 

  7. J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, J. Adv. Dielectr. 06, 1650009 (2016)

    Article  CAS  Google Scholar 

  8. Q.G. Chi, L. Gao, X. Wang, J.Q. Lin, J. Sun, Q.Q. Lei, J. Alloys Compd. 559, 45 (2013)

    Article  CAS  Google Scholar 

  9. F. Amaral, E. Clemente, M. Valente, L. Costa, F. Costa, Ceram. Int. 40, 16503 (2014)

    Article  CAS  Google Scholar 

  10. C. Kim, Y. Jang, S. Seo, C. Song, J. Son, Y. Yang, J. Cho, Phys. Rev. B 85, 245210 (2012)

    Article  Google Scholar 

  11. D.L. Sun, A.Y. Wu, S.T. Yin, J. Am. Ceram. Soc. 91, 169 (2008)

    Article  CAS  Google Scholar 

  12. R. Kumar, M. Zulfequar, V. Singh, J. Tawale, T. Senguttuvan, J. Alloys Compd. 541, 428 (2012)

    Article  CAS  Google Scholar 

  13. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)

    Article  Google Scholar 

  14. A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)

    Article  CAS  Google Scholar 

  15. S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, J. Alloys Compd. 551, 456 (2013)

    Article  CAS  Google Scholar 

  16. B. Zhang, Q. Zhao, A.M. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221 (2014)

    Article  CAS  Google Scholar 

  17. J. Yuan, T. Yang, Y. Ni, B. Zhang, J. Mater. Sci. Mater. Electron. 29, 2331 (2018)

    Article  CAS  Google Scholar 

  18. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)

    Article  CAS  Google Scholar 

  19. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Am. Ceram. Soc. 95, 1497 (2012)

    Article  CAS  Google Scholar 

  20. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D 42, 055404 (2009)

    Article  Google Scholar 

  21. J. Ghijsen, L.H. Tjeng, J.V. Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

    Article  CAS  Google Scholar 

  22. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  23. Y. Boudeville, F. Fiqueras, M. Forissier, J.L. Portefaix, J.C. Vedrine, J. Catal. 58, 52 (1979)

    Article  CAS  Google Scholar 

  24. K. Park, J.K. Lee, J. Alloys Compd. 475, 513 (2009)

    Article  CAS  Google Scholar 

  25. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

    Article  CAS  Google Scholar 

  26. M.H. Whangbo, M.A. Subramanian, Chem. Mater. 18, 3257 (2006)

    Article  CAS  Google Scholar 

  27. K. Park, J. Am. Ceram. Soc. 88, 862 (2005)

    Article  CAS  Google Scholar 

  28. K. Park, S.J. Yun, J. Mater. Sci. Mater. Electron. 15, 359 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the National Natural Science Foundation of China (Grant No. 61871377) and the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhang or Aimin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, B. & Chang, A. New negative temperature coefficient ceramics in Ca1−xYxCu3Ti3.9Zr0.1O12 system. J Mater Sci: Mater Electron 31, 1745–1751 (2020). https://doi.org/10.1007/s10854-019-02692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02692-0

Navigation