Skip to main content

Advertisement

Log in

Porous hard carbon microtubes from renewable cotton as high-performance anode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Consumer electronics or electric vehicles/power grids requires lithium-ion batteries (LIBs) with an increasingly outstanding energy-storage performance. However, the present graphite anode still faces significant challenges on relatively low specific capacity and poor rate performance. Herein, porous hard carbon microtubes (HCMs) were prepared by an activation method using natural cotton as a precursor, and their performance as an anode electrode. The electrochemical results of HCMs showed high performance on initial Coulomb efficiency, rate performance and cycle stability. The micro structure of HCMs were characterized, and the mechanism of high-performance generation of HCMs was analyzed. This article may provide an effective method to improve the electrochemical performance of hard carbon, which is also benefit to further understanding the lithium storage mechanism in porous hard carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Larcher, J.M. Tarascon, Nat. Chem. 7, 19–29 (2015)

    Article  CAS  Google Scholar 

  2. P.B. Liu, M.Y. Yang, S.H. Zhou, Y. Huang, Y.D. Zhu, Electrochim. Acta 294, 383–390 (2019)

    Article  CAS  Google Scholar 

  3. M.Y. Wang, Y. Huang, Y.D. Zhu, X. Wu, N. Zhang, H.M. Zhang, J. Alloys Compd. 774, 601–609 (2019)

    Article  CAS  Google Scholar 

  4. F. Arshad, L. Li, K. Amin, E. Fan, N. Manurkar, A. Ahmad, J. Yang, F. Wu, R. Chen, ACS Sustain. Chem. Eng. 8, 13527–13554 (2020)

    Article  Google Scholar 

  5. S.M. Jafari, M. Khosravi, M. Mollazadeh, Electrochim. Acta 203, 9–20 (2016)

    Article  CAS  Google Scholar 

  6. L.F. Li, C.L. Fan, Y.C. Tang, B. Zeng, Int. J. Energy Res. 43, 4987–4994 (2019)

    Article  CAS  Google Scholar 

  7. Z. Chen, Y.J. Du, Z.H. Zhang, T. Gao, H.B. Li, Nanotechnology 30, 495403 (2019)

    Article  CAS  Google Scholar 

  8. J.N. Liang, Y. Lu, Y. Liu, X.P. Liu, M.X. Gong, S.F. Deng, H.Y. Yang, P.F. Liu, D.L. Wang, J. Power Sources 441, 227185 (2019)

    Article  CAS  Google Scholar 

  9. X. Zhang, E.L. Qu, Q.Z. Xiao, J. Zhang, G.T. Lei, Z.H. Li, J. Guan, Ionics 25, 5735–5743 (2019)

    Article  CAS  Google Scholar 

  10. Y.J. Zhang, G.Y. Wang, L. Tang, J.J. Wu, B.K. Guo, M. Zhu, C. Wu, S.X. Dou, M.H. Wu, J. Mater. Chem. A 7, 25369–25376 (2019)

    Article  CAS  Google Scholar 

  11. W.P. Diao, S. Saxena, M. Pecht, J. Power Sources 435, 226830 (2019)

    Article  CAS  Google Scholar 

  12. L.Q. Zhang, C. Lyu, IEEE Access 6, 44417–44432 (2018)

    Article  Google Scholar 

  13. P. Cicconi, L. Postacchini, E. Pallotta, A. Monteriu, M. Prist, M. Bevilacqua, M. Germani, J. Power Sources 436, 226837 (2019)

    Article  CAS  Google Scholar 

  14. Y.Y. Wu, T. Bo, J.R. Zhang, Z.S. Lu, Z.G. Wang, Y.H. Li, B.T. Wang, Phys. Chem. Chem. Phys. 21, 19513–19520 (2019)

    Article  CAS  Google Scholar 

  15. Y. Liu, S. He, Y.J. Zhong, X.M. Xu, Z.P. Shao, J. Alloys Compd. 805, 522–530 (2019)

    Article  CAS  Google Scholar 

  16. S.M. Cao, J.C. Bennett, Y.K. Wang, S. Gracious, M. Zhu, M.N. Obrovac, J. Power Sources 438, 227003 (2019)

    Article  CAS  Google Scholar 

  17. Y.S. Xue, W.W. Cheng, X.M. Luo, J.P. Cao, Y. Xu, Inorg. Chem. 58, 13058–13065 (2019)

    Article  CAS  Google Scholar 

  18. N.P. Shetti, S. Dias, K.R. Reddy, Mater. Sci. Semicond. Process 104, 104684 (2019)

    Article  CAS  Google Scholar 

  19. C. Munivenkatappa, V.R. Shetty, G.S. Suresh, ChemistrySelect 4, 12942–12949 (2019)

    Article  CAS  Google Scholar 

  20. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X.J.E.S.M. He, Energy Storage Mater. 10, 246–267 (2018)

    Article  Google Scholar 

  21. N.D. Rago, J. Bareno, J.L. Li, Z.J. Du, D.L. Wood, L.A. Steele, J. Lamb, S. Spangler, C. Grosso, K. Fenton, I. Bloom, J. Power Sources 385, 148–155 (2018)

    Article  Google Scholar 

  22. C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo, L. Liu, Carbon 64, 553–556 (2013)

    Article  CAS  Google Scholar 

  23. H.B. Wang, Q. Yu, J. Qu, J. Russian, Phys. Chem. A 91, 1152–1155 (2017)

    CAS  Google Scholar 

  24. W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, D.X. Cui, J. Mater. Chem. A 5, 19521–19540 (2017)

    Article  CAS  Google Scholar 

  25. M.C. Tan, W.H. Zhang, C.L. Fan, L.F. Li, H. Chen, R. Li, T. Luo, S.C. Han, Energy Technol. 7, 1801164 (2019)

    Article  Google Scholar 

  26. Q.T. Zhang, M. Li, Y. Meng, A. Li, Electron. Mater. Lett. 14, 755–765 (2018)

    Article  CAS  Google Scholar 

  27. J.M. Jiang, Y.D. Zhang, Z.W. Li, Y.F. An, Q. Zhu, Y.H. Xu, S. Zang, H. Dou, X.G. Zhang, J. Colloid Interface Sci. 567, 75–83 (2020)

    Article  CAS  Google Scholar 

  28. L.F. Li, Z.P. Yuan, R.Z. Fan, T. Luo, C.L. Fan, J. Mater. Sci.-Mater. Electron. 31, 6449–6460 (2020)

    Article  CAS  Google Scholar 

  29. R.Z. Li, J.F. Huang, J.Y. Li, L.Y. Cao, X.Z. Zhong, A.M. Yu, G.X. Lu, J. Electroanal. Chem. 862, 8 (2020)

    Article  Google Scholar 

  30. H.W. Lee, Y.M. Kim, S. Kim, C. Ryu, S.H. Park, Y.K. Park, Carbon Lett. 26, 1–10 (2018)

    Google Scholar 

  31. X. Zhang, J.B. Hu, X.Y. Chen, M. Zhang, Q.Y. Huang, X.Q. Du, Y. Liu, X.J. Li, J. Porous Mat. 26, 1821–1830 (2019)

    Article  CAS  Google Scholar 

  32. P. Yan, F.R. Ai, C.L. Cao, Z.M. Luo, J. Mater. Sci.-Mater. Electron. 30, 14120–14129 (2019)

    Article  CAS  Google Scholar 

  33. S. Kumagai, Y. Abe, T. Saito, T. Eguchi, M. Tomioka, M. Kabir, D. Tashima, J. Power Sources 437, 226924 (2019)

    Article  CAS  Google Scholar 

  34. G. Murali, S. Harish, S. Ponnusamy, J. Ragupathi, H.A. Therese, M. Navaneethan, C. Muthamizhchelvan, Appl. Surf. Sci. 492, 464–472 (2019)

    Article  CAS  Google Scholar 

  35. B.B. Ma, Y.W. Huang, Z.Z. Nie, X.B. Qiu, D.W. Su, G.X. Wang, J.M. Yuan, X.Q. Xie, Z.J. Wu, RSC Adv. 9, 20424–20431 (2019)

    Article  CAS  Google Scholar 

  36. X.Q. Zhang, X.X. Huang, X.D. Zhang, L. Xia, B. Zhong, T. Zhang, G.W. Wen, Electrochim. Acta 222, 518–527 (2016)

    Article  CAS  Google Scholar 

  37. Y.D. Zhu, Y. Huang, C. Chen, M.Y. Wang, P.B. Liu, Electrochim. Acta 321, 134698 (2019)

    Article  CAS  Google Scholar 

  38. S. Sekar, Y. Lee, D.Y. Kim, S. Lee, Nanomaterials 9, 871 (2019)

    Article  CAS  Google Scholar 

  39. T.Q. Chen, Y. Liu, L.K. Pan, T. Lu, Y.F. Yao, Z. Sun, D.H.C. Chua, Q. Chen, J. Mater. Chem. A 2, 4117–4121 (2014)

    Article  CAS  Google Scholar 

  40. L. Chen, Y. Zhang, C. Lin, W. Yang, Y. Meng, Y. Guo, M. Li, D. Xiao, J. Mater. Chem. A 2, 9684–9690 (2014)

    Article  CAS  Google Scholar 

  41. X. Zhou, F. Chen, T. Bai, B. Long, Q. Liao, Y. Ren, J. Yang, Green Chem. 18, 2078–2088 (2016)

    Article  CAS  Google Scholar 

  42. L. Han, J. Tang, Q. Wei, C. Chen, M. Wei, Chem. Commun. (Cambridge, England) 55, 14319–14322 (2019)

    Article  CAS  Google Scholar 

  43. X.D. Zhang, Z.Y. Bi, G.G. Xu, C.G. Li, W. He, J.F. Zhu, J. Power Sources 438, 11 (2019)

    Google Scholar 

  44. Y.H. Wang, Y.Y. Zhang, H. Li, Y.Y. Peng, J.Y. Li, J. Wang, B.J. Hwang, J.B. Zhao, Chem. Eng. J. 332, 49–56 (2018)

    Article  CAS  Google Scholar 

  45. Y.H. Wang, Y.Y. Zhang, H. Li, Y.Y. Peng, J.Y. Li, J. Wang, B.J. Hwang, J.B. Zhao, Electrochim. Acta 247, 271–280 (2017)

    Article  CAS  Google Scholar 

  46. H. Li, Y.H. Wang, J.X. Huang, Y.Y. Zhang, J.B. Zhao, Electrochim. Acta 225, 443–451 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by financial support in China by Tianjin Natural Science Foundation (18JCYBJC43900) and the Fundamental Research Funds for the Central Universities in Civil Aviation University of China (3122020046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Hu, J. & Zhou, X. Porous hard carbon microtubes from renewable cotton as high-performance anode material for lithium-ion batteries. J Mater Sci: Mater Electron 32, 1631–1640 (2021). https://doi.org/10.1007/s10854-020-04932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04932-0

Navigation