Skip to main content

Advertisement

Log in

Influence of an SCN- moiety on the electronic properties of γ-CsPb(SCN)xBr3-x and the performance of carbon-based HTL-free γ-CsPb(SCN)xBr3-x perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A CsPbBr3 film was prepared by the hot-casting method from a mixed CsBr and PbBr2 solution with an orthorhombic-phase (γ) CsPbBr3 perovskite structure. γ-CsPbBr3 film has a yellow color with a bandgap energy of 2.32 eV. The low SCN- dopant level forming CsPb(SCN)xBr3-x (x = 0.0625, 0.125, 0.01875, 0.25 and 0.5) films maintains an orthorhombic CsPb(SCN)xBr3-x structure with a film bandgap of 2.32-2.34 eV. The calculated bandgap of the optimized γ-CsPb(SCN)xBr3-x structures slightly changed with SCN- dopant levels from x = 0 to x = 0.5. A carbon-based hole transport layer (HTL)-free γ-CsPb(SCN)0.25Br2.75 solar cell delivers the highest efficiency of 4.5% under six conditions compared to a carbon-based HTL-free pure γ-CsPbBr3 solar cell with an efficiency of 3.89%. The stability of the carbon-based HTL-free γ-CsPb(SCN)0.25Br2.75 solar cell is better than that of the carbon-based HTL-free pure γ-CsPbBr3 solar cell with efficiency retention of 88.96% and 61.86% of their initial values, respectively, after a 30-day testing period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. NREL tranforming Energy, Best research-cell efficiency chart. (2020). nrel.gov/pv/cell-efficiency.html

  2. J.M. Ball, A. Petrozza, Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149

    Article  CAS  Google Scholar 

  3. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778

    Article  CAS  Google Scholar 

  4. M. Imran, A. Saleem, N.A. Khan, A.H. Kamboh, Phys. B: Condensed Matter 572, 1 (2019). https://doi.org/10.1016/j.physb.2019.07.041

    Article  CAS  Google Scholar 

  5. C.F.J. Lau, X. Deng, J. Zheng et al., J. Mater. Chem. A 6, 5580 (2018). https://doi.org/10.1039/C7TA11154A

    Article  CAS  Google Scholar 

  6. N.J. Jeon, J.H. Noh, W.S. Yang et al., Nature 517, 476 (2015). https://doi.org/10.1038/nature14133

    Article  CAS  Google Scholar 

  7. D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, ACS Energy Lett. 1, 1199 (2016). https://doi.org/10.1021/acsenergylett.6b00495

    Article  CAS  Google Scholar 

  8. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014). https://doi.org/10.1002/adma.201305172

    Article  CAS  Google Scholar 

  9. A. Halder, R. Chulliyil, A.S. Subbiah et al., J. Phys. Chem. Lett. 6, 3483 (2015). https://doi.org/10.1021/acs.jpclett.5b01327

    Article  CAS  Google Scholar 

  10. X. Zhang, Z. Jin, J. Zhang et al., ACS Appl. Mater. Interfaces 10, 7145 (2018). https://doi.org/10.1021/acsami.7b18902

    Article  CAS  Google Scholar 

  11. J. Duan, D. Dou, Y. Zhao et al., Mater. Today Energy 10, 146 (2018). https://doi.org/10.1016/j.mtener.2018.09.001

    Article  Google Scholar 

  12. H.S. Jung, N.-G. Park, Small 11, 10 (2015). https://doi.org/10.1002/smll.201402767

    Article  CAS  Google Scholar 

  13. G. Eperon, G. Paterno, R. Hawke et al., J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA06398A

    Article  Google Scholar 

  14. B. Zhao, S.-F. Jin, S. Huang et al., J. Am. Chem. Soc. 140, 11716 (2018). https://doi.org/10.1021/jacs.8b06050

    Article  CAS  Google Scholar 

  15. Z. Liu, J. Peters, C. Stoumpos et al., Heavy Metal Ternary Halides for Room-Temperature x-Ray and Gamma-Ray Detection (Society of Photo-Optical Instrumentation Engineers Publishing, USA, 2013).

    Book  Google Scholar 

  16. Y. He, L. Matei, H.J. Jung et al., Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3

    Article  CAS  Google Scholar 

  17. W. Cai, Z. Chen, D. Chen et al., RSC Adv. 9, 27684 (2019). https://doi.org/10.1039/C9RA05270D

    Article  CAS  Google Scholar 

  18. A. Pan, X. Ma, S. Huang et al., J. Phys. Chem. Lett. 10, 6590 (2019). https://doi.org/10.1021/acs.jpclett.9b02605

    Article  CAS  Google Scholar 

  19. G.J. Matt, I. Levchuk, J. Knüttel et al., Adv. Mater. Interfaces 7, 1901575 (2020). https://doi.org/10.1002/admi.201901575

    Article  CAS  Google Scholar 

  20. M. Ahmad, G. Rehman, L. Ali et al., J. Alloys Compd. 705, 828 (2017). https://doi.org/10.1016/j.jallcom.2017.02.147

    Article  CAS  Google Scholar 

  21. D. Liu, C. Yang, M. Bates, R.R. Lunt, iScience 6, 272 (2018). https://doi.org/10.1016/j.isci.2018.08.005

    Article  CAS  Google Scholar 

  22. PD James Speight, Lange’s Handbook of Chemistry, Sixteenth. (McGraw-Hill Education, New York, 2005).

    Google Scholar 

  23. M. Ahmad, G. Rehman, L. Ali et al., J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.147

    Article  Google Scholar 

  24. Y. Chen, B. Li, W. Huang, D. Gao, Z. Liang, Chem. Commun. 51, 11997 (2015). https://doi.org/10.1039/C5CC03615A

    Article  CAS  Google Scholar 

  25. Y.-H. Chiang, M.-H. Li, H.-M. Cheng, P.-S. Shen, P. Chen, ACS Appl. Mater. Interfaces 9, 2403 (2017). https://doi.org/10.1021/acsami.6b13206

    Article  CAS  Google Scholar 

  26. K Pantiwa, S Pitphichaya, T Madsakorn, et al. (2020) Jounal of Korean Physical Society Accepted.

  27. Y. Lou, Y. Niu, D. Yang et al., Nano Res. 11, 2715 (2018). https://doi.org/10.1007/s12274-017-1901-z

    Article  CAS  Google Scholar 

  28. X. Wang, J. Wu, Y. Yang et al., J. Mater. Chem. A 7, 13256 (2019). https://doi.org/10.1039/C9TA03351C

    Article  CAS  Google Scholar 

  29. L. Duan, L. Li, Y. Zhao et al., Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00200

    Article  Google Scholar 

  30. Z. Hawash, L.K. Ono, Y. Qi, Adv. Mater. Interfaces 5, 1700623 (2018). https://doi.org/10.1002/admi.201700623

    Article  CAS  Google Scholar 

  31. Y. Zhang, H. Zhang, X. Zhang et al., Metals 8, 964 (2018). https://doi.org/10.3390/met8110964

    Article  CAS  Google Scholar 

  32. H. Zheng, C. Li, A. Wei, J. Liu, Y. Zhao, Z. Xiao, Int. J. Hydrogen Energy 43, 11403 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.226

    Article  CAS  Google Scholar 

  33. T. Liu, L. Liu, M. Hu et al., J. Power Sour. 293, 533 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.106

    Article  CAS  Google Scholar 

  34. C. Xu, Z. Zhang, Y. Hu et al., J. Energy Chem. 27, 764 (2018). https://doi.org/10.1016/j.jechem.2018.01.030

    Article  Google Scholar 

  35. I. Poli, J. Baker, J. McGettrick et al., J. Mater. Chem. A 6, 18677 (2018). https://doi.org/10.1039/C8TA07694D

    Article  CAS  Google Scholar 

  36. X. Liu, X. Tan, Z. Liu et al., Nano Energy 56, 184 (2019). https://doi.org/10.1016/j.nanoen.2018.11.053

    Article  CAS  Google Scholar 

  37. F. Bu, B. He, Y. Ding et al., Solar Energy Mater. Solar Cells 205, 110267 (2020). https://doi.org/10.1016/j.solmat.2019.110267

    Article  CAS  Google Scholar 

  38. S. Wang, P. Jiang, W. Shen et al., Chem. Commun. 55, 2765 (2019). https://doi.org/10.1039/C8CC09905G

    Article  CAS  Google Scholar 

  39. C.C. Stoumpos, C.D. Malliakas, J.A. Peters et al., Cryst. Growth & Design 13, 2722 (2013). https://doi.org/10.1021/cg400645t

    Article  CAS  Google Scholar 

  40. K Persson, LBNL Materials Project; Lawrence Berkeley National Lab. (LBNL), (Berkeley, CA United States, 2014)

  41. J Hafner, G Kresse, in Gonis A, Meike A, Turchi PEA (eds)Properties of Complex Inorganic Solids (Springer US, Boston, MA, 1997)

  42. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  43. D. Liu, Z. Hu, W. Hu et al., Mater. Lett. 186, 243 (2017). https://doi.org/10.1016/j.matlet.2016.10.015

    Article  CAS  Google Scholar 

  44. X. Su, J. Zhang, G. Bai, Bull. Mater. Sci. 41, 38 (2018). https://doi.org/10.1007/s12034-018-1566-6

    Article  CAS  Google Scholar 

  45. R.E. Beal, N.Z. Hagström, J. Barrier et al., Matter 2, 207 (2020). https://doi.org/10.1016/j.matt.2019.11.001

    Article  Google Scholar 

  46. S. Gholipour, J.-P. Correa-Baena, K. Domanski et al., Adv. Energy Mater. 6, 1601116 (2016). https://doi.org/10.1002/aenm.201601116

    Article  CAS  Google Scholar 

  47. F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.-P. Wu, E. Wei-Guang Diau, J. Mater. Chem. A 4, 13488 (2016). https://doi.org/10.1039/C6TA05938D

    Article  CAS  Google Scholar 

  48. M. Duan, C. Tian, Y. Hu et al., ACS App. Mater. Interfaces 9, 31721 (2017). https://doi.org/10.1021/acsami.7b05689

    Article  CAS  Google Scholar 

  49. J. Duan, Y. Zhao, B. He, Q. Tang, Small 14, 1704443 (2018). https://doi.org/10.1002/smll.201704443

    Article  CAS  Google Scholar 

  50. P. Teng, X. Han, J. Li et al., ACS Appl. Mater. Interfaces 10, 9541 (2018). https://doi.org/10.1021/acsami.8b00358

    Article  CAS  Google Scholar 

  51. J. Liang, C. Wang, Y. Wang et al., J. Am. Chem. Soc. 138, 15829 (2016). https://doi.org/10.1021/jacs.6b10227

    Article  CAS  Google Scholar 

  52. G. Tong, T. Chen, H. Li et al., Solar RRL 3, 1900030 (2019). https://doi.org/10.1002/solr.201900030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to Miss Pantiwa Kumlangwan and Miss Madsakorn Towannang for their suggestions and help in the experimental work. This work was supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation and Khon Kaen University, Thailand, by the Center of Excellence in Physics (ThEP), by the Integrated Nanotechnology Center, Khon Kaen University, by Srinakharinwirot University (Contract number 028/2564), and by the National Nanotechnology Center (NANOTEC), NSTD, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pornjuk Srepusharawoot or Samuk Pimanpang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 2507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suksaengrat, P., Faibut, N., Chompoosor, A. et al. Influence of an SCN- moiety on the electronic properties of γ-CsPb(SCN)xBr3-x and the performance of carbon-based HTL-free γ-CsPb(SCN)xBr3-x perovskite solar cells. J Mater Sci: Mater Electron 32, 1557–1569 (2021). https://doi.org/10.1007/s10854-020-04924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04924-0

Navigation