Skip to main content
Log in

Studies on structural, electronic and magnetic properties of La3+ ion-substituted Ho2FeMnO6 double perovskite compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The advantage of exchanging lanthanides and transition metal ions make the double perovskite structured materials yield with the important prospects for the study towards applications. The double perovskite material, Ho2FeMnO6 has been phase stabilized using the conventional solid-state reaction technique. The effect of La substitution on the properties of the Ho2FeMnO6 is also carried out. The structural stability of the prepared compounds is confirmed using the XPS study which confirms the oxidation states of Ho, La, Fe and Mn to be +3. Similarly, the formation of the double perovskite structure is confirmed using the Rietveld refinement of powder X-ray diffraction data by following HoFeO3 as the starting model. The prepared compounds crystallized in orthorhombic structure with Pbnm space group. The La3+ substitution marginally increases the cell volume as it has bigger ionic radius than that of Ho3+ ion. The morphology comparison of the pure and the La-substituted Ho2FeMnO6 compounds does not show any major variation. The magnetization study of Ho2FeMnO6 compound reveals the antiferromagnetic property arising from the fact of Fe3+ and Mn3+ ions have almost similar magnitude of magnetic moment aligned anti-parallel to each other. It is further inferred that the substitution of La3+ ions marginally reduces the magnetic response of the materials. All the characterization studies confirm that the Ho2FeMnO6 double perovskite structure has been formed and the substitution of trivalent lanthanide (La3+) has shown with marginal effect on the physical properties of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Vasala, M. Karppinen, A2B′B″O6 perovskites: a review. Progress Solid State Chem. 43, 1 (2015). https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  CAS  Google Scholar 

  2. P. Woodward, R.D. Hoffmann, A.W. Sleight, Order-disorder in A2M3+M5+O6 perovskites. J. Mater. Res. 9, 2118 (1994). https://doi.org/10.1557/JMR.1994.2118

    Article  CAS  Google Scholar 

  3. P. Somasundaram, S. Kathiresan, S. Mathu et al., Structural and phase transition of Mg-doped on Mn-site in La0.7Sr0.3MnO3 bulk/nanostructured perovskite characterised through online ultrasonic technique. South African J. Chem. Eng. 23, 50 (2017). https://doi.org/10.1016/j.sajce.2016.12.001

    Article  Google Scholar 

  4. T. Tiittanen, S. Vasala, M. Karppinen, Assessment of magnetic properties of A2B′B′′O6 double perovskites by multivariate data analysis techniques. Chem. Commun. 55, 1722 (2019). https://doi.org/10.1039/C8CC09579E

    Article  CAS  Google Scholar 

  5. J. Longo, R. Ward, Magnetic compounds of hexavalent rhenium with the perovskite-type structure. J. Am. Chem. Soc. 83, 2816 (1961). https://doi.org/10.1021/ja01474a007

    Article  Google Scholar 

  6. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677 (1998). https://doi.org/10.1038/27167

    Article  CAS  Google Scholar 

  7. K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, Y. Tokura, Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite ${\mathrm{Sr}}_{2}{\mathrm{FeReO}}_{6}$. Physical Review B 59, 11159 (1999). https://doi.org/10.1103/PhysRevB.59.11159

    Article  CAS  Google Scholar 

  8. A. Glazer, The classification of tilted octahedra in perovskites. Acta Crystallographica Sect.B 28, 3384 (1972). https://doi.org/10.1107/S0567740872007976

    Article  CAS  Google Scholar 

  9. D. zając, m sikora, v prochazka et al., local magnetic and electronic properties of the A2FeM’O6 (A = Ba, Sr, Ca, M’ = Mo, Re) double Perovskites. Acta Physica Polonica A (2007). https://doi.org/10.12693/APhysPolA.111.797

    Article  Google Scholar 

  10. M. Dhilip, N.A. Devi, J.S. Punitha, V. Anbarasu, K.S. Kumar, Conventional synthesis and characterization of cubically ordered La2FeMnO6 double perovskite compound. Vacuum 167, 16 (2019). https://doi.org/10.1016/j.vacuum.2019.05.028

    Article  CAS  Google Scholar 

  11. M. Dhilip, M. Manikandan, S.R. Kumar, V. Jayalakshmi, V. Anbarasu, K.S. Kumar, Synthesis of SrCoO3 perovskite as W-based double perovskite and its structural properties. J. Mater. Sci.: Mater. Electron. 30, 4270 (2019). https://doi.org/10.1007/s10854-019-00718-1

    Article  CAS  Google Scholar 

  12. S. Abhirami, S. Sathik Basha, Phase stabilization and effect of trivalent lanthanide substitution on Dy2FeMnO6 double perovskite compounds. Vacuum 177, 109412 (2020). https://doi.org/10.1016/j.vacuum.2020.109412

    Article  CAS  Google Scholar 

  13. Y. Mao, J. Parsons, J.S. McCloy, Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles. Nanoscale 5, 4720 (2013). https://doi.org/10.1039/C3NR00825H

    Article  CAS  Google Scholar 

  14. N. Lenin, K. Sakthipandi, R. Rajesh Kanna, G. Rajkumar, Electrical, magnetic and structural properties of polymer-blended lanthanum-added nickel nano-ferrites. Ceram. Int. 44, 21866 (2018). https://doi.org/10.1016/j.ceramint.2018.08.295

    Article  CAS  Google Scholar 

  15. J.T. Zhang, X.M. Lu, J. Zhou et al., First-principles study of structural, electronic, and magnetic properties of double perovskite ${\text{Ho}}_{2}{\text{MnFeO}}_{6}$. Phys. Rev. B 82, 224413 (2010). https://doi.org/10.1103/PhysRevB.82.224413

    Article  CAS  Google Scholar 

  16. T. Chakraborty, S. Elizabeth, Synthesis, structural and dielectric properties of double perovskite Ho2FeMnO6. AIP Conf. Proceed. 1728, 020136 (2016). https://doi.org/10.1063/1.4946187

    Article  Google Scholar 

  17. N.S. Pavlovskii, A.A. Dubrovskii, S.E. Nikitin, S.V. Semenov, K.Y. Terent’ev, K.A. Shaikhutdinov, Magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals. Phys. Solid State 60, 520 (2018). https://doi.org/10.1134/S1063783418030228

    Article  CAS  Google Scholar 

  18. A.N. Hapishah, R.S. Azis, M. Hashim et al., Influence of temperature on microstructure, structural and ferroelectricity evolution properties with nano and micrometer grain size in multiferroic HoMnO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 16053 (2017). https://doi.org/10.1007/s10854-017-7505-2

    Article  CAS  Google Scholar 

  19. O.P. Vajk, M. Kenzelmann, J.W. Lynn, S.B. Kim, S.W. Cheong, Magnetic order and spin dynamics in ferroelectric HoMnO3. Phys. Rev. Lett. 94, 087601 (2005). https://doi.org/10.1103/PhysRevLett.94.087601

    Article  CAS  Google Scholar 

  20. T. Chatterji, M. Meven, P.J. Brown, Temperature evolution of magnetic structure of HoFeO3 by single crystal neutron diffraction. AIP Adv. 7, 045106 (2017). https://doi.org/10.1063/1.4979710

    Article  CAS  Google Scholar 

  21. G. Kotnana, S.N. Jammalamadaka, Enhanced spin – reorientation temperature and origin of magnetocapacitance in HoFeO3. J. Magn. Magn. Mater. 418, 81 (2016). https://doi.org/10.1016/j.jmmm.2016.02.054

    Article  CAS  Google Scholar 

  22. A.K. Ovsyanikov, I.A. Zobkalo, W. Schmidt, S.N. Barilo, S.A. Guretskii, V. Hutanu, Neutron inelastic scattering study of rare-earth orthoferrite HoFeO3. J. Magn. Magn. Mater. 507, 166855 (2020). https://doi.org/10.1016/j.jmmm.2020.166855

    Article  CAS  Google Scholar 

  23. G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Progress Mater. Sci. 107, 100591 (2020). https://doi.org/10.1016/j.pmatsci.2019.100591

    Article  CAS  Google Scholar 

  24. Z. Yang, T. Zhao, X. Huang et al., Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 8, 473 (2017). https://doi.org/10.1039/C6SC01819J

    Article  CAS  Google Scholar 

  25. J.F. Moulder. Handbook of X-Ray photoelectron spectroscopy. Phys. Electron. 230 (1995)

  26. Y. Du, Z.X. Cheng, X.L. Wang, S.X. Dou, Lanthanum doped multiferroic DyFeO3: structural and magnetic properties. J. Appl. Phys. 107, 09D908 (2010). https://doi.org/10.1063/1.3360354

    Article  Google Scholar 

  27. W. Rudolph, G. Irmer, On the hydration of heavy rare earth ions: Ho3+, Er3+, Tm3+, Yb3+ and Lu3+—A raman study. Molecules (2019). https://doi.org/10.3390/molecules24101953

    Article  Google Scholar 

  28. N. Dilawar Sharma, J. Singh, A. Vijay, K. Samanta, S. Dogra, A.K. Bandyopadhyay, Pressure-induced structural transition trends in nanocrystalline rare-earth sesquioxides: a raman investigation. J. Phys. Chem. C 120, 11679 (2016). https://doi.org/10.1021/acs.jpcc.6b02104

    Article  CAS  Google Scholar 

  29. S.D. Pandey, K. Samanta, J. Singh, N.D. Sharma, A.K. Bandyopadhyay, Raman scattering of rare earth sesquioxide Ho2O3: a pressure and temperature dependent study. J. Appl. Phys. 116, 133504 (2014). https://doi.org/10.1063/1.4896832

    Article  CAS  Google Scholar 

  30. X. Tan, S. Xu, L. Zhang, F. Liu, B.A. Goodman, W. Deng, Preparation and optical properties of Ho3+-doped YSZ single crystals. Appl. Phys. A 124, 853 (2018). https://doi.org/10.1007/s00339-018-2284-z

    Article  CAS  Google Scholar 

  31. M.A. Marzouk, I.M. Elkashef, H.A. Elbatal, Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2. Applied Physics A 125, 97 (2019). https://doi.org/10.1007/s00339-019-2391-5

    Article  CAS  Google Scholar 

  32. Hu. Chenguo, Hong Liu, Wenting Dong et al., La(OH)3 and La2O3 nanobelts—synthesis and physicalproperties. Adv. Mater. (2007). https://doi.org/10.1002/adma.200601300

    Article  Google Scholar 

  33. D.-Y. Lu, D.-X. Guan, Photoluminescence associated with the site occupations of Ho3+ ions in BaTiO3. Sci. Rep. 7, 6125 (2017). https://doi.org/10.1038/s41598-017-06521-4

    Article  CAS  Google Scholar 

  34. A. Dwivedi, E. Rai, D. Kumar, S.B. Rai, Effect of synthesis techniques on the optical properties of Ho3+/Yb3+ Co-doped YVO4 phosphor: a comparative study. ACS Omega 4, 6903 (2019). https://doi.org/10.1021/acsomega.8b03606

    Article  CAS  Google Scholar 

  35. Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. J. Mater. Chem. A 7, 13833 (2019). https://doi.org/10.1039/C9TA03385H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors thank the Management & the Department of Physics, Ethiraj College for Women, Chennai for the laboratory facilities provided to carry out the research work. Authors thank the Department of Chemistry & SAIF, Indian Institute of Technology—Madras, Chennai for providing facilities to carry out the PXRD, VSM, SEM-EDAX, UV-DRS and Photoluminescence studies. Authors thank Anna University, Chennai for providing facility to carry out Micro Raman characterization work. The Authors thank SRM Institute of Science & Technology, Chennai for the XPS studies provided to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abhirami.

Ethics declarations

Conflict of interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhirami, S., Basha, S.S. Studies on structural, electronic and magnetic properties of La3+ ion-substituted Ho2FeMnO6 double perovskite compounds. J Mater Sci: Mater Electron 32, 1506–1520 (2021). https://doi.org/10.1007/s10854-020-04920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04920-4

Navigation