Skip to main content

Advertisement

Log in

Temperature stability of lead-free BST-BZN relaxor ferroelectric ceramics for energy storage capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low sintering temperature and good temperature stability are the crucial parameters for the actual application of the dielectric capacitors. In this work, lead-free relaxor ferroelectric ceramics with chemical formula (1 − x)(Ba0.4Sr0.6)TiO3-xBi(Zn2/3Nb1/3)O3 [(1 − x)BST-xBZN, (x = 0.00 to 0.225)] were developed through a solid-state synthesis route. The microstructures, dielectric performance, and temperature stability were studied in detail. The results show that 0.775BST-0.225BZN bulk ceramic with capacitance-temperature dependence satisfied with X8R specification can be obtained at a sintering temperature of 1140 °C. In addition, the energy storage performance of 0.775BST-0.225BZN bulk ceramic exhibits good temperature stability in a wide range of temperatures from 25 to 150 °C. High dispersion results in capacitance-temperature stability and energy storage stability. More importantly, the 0.775BST-0.225BZN ceramic also displays good charge–discharge performance dependence on temperatures (variations of the current density and power density are less than 3% over 25–150 °C). These results demonstrate that 0.775BST-0.225BZN lead-free ceramic is a potential material for dielectric capacitors that can be operated in a wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Chen, X. Yao, X. Wei, Relaxor behavior of (Sr, Ba, Bi)TiO3 ferroelectric ceramic. Solid State Commun. 141, 84–88 (2007)

    Article  CAS  Google Scholar 

  2. H. Cheng, H. Du, W. Zhou, D. Zhu, F. Luo, B. Xue, Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96, 833–837 (2013)

    Article  CAS  Google Scholar 

  3. N. Raengthon, T. Sebastian, D. Cumming, I. Reaney, D. Cann, BaTiO3-Bi(Zn1/2Ti1/2)O3-BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 95, 3554–3561 (2012)

    Article  CAS  Google Scholar 

  4. L. Yang, X. Kong, F. Li et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  5. A. Kusko, J. Dedad, Stored energy - short-term and long-term energy storage methods. IEEE Ind. Appl. Mag. 13, 66–72 (2007)

    Article  Google Scholar 

  6. D. Wang, J. Liu, M. Zeng, C. Zhang et al., Stabilizing temperature-capacitance dependence of (Sr, Pb, Bi)TiO3-Bi4Ti3O12 solutions for energy storage. J. Am. Ceram. Soc. 102, 4029–4037 (2019)

    Article  CAS  Google Scholar 

  7. J. Li, J. Liu, M. Zeng et al., High efficiency and power density relaxor ferroelectric Sr0.875Pb0.125TiO3 - Bi(Mg0.5Zr0.5)O3 ceramics for pulsed power capacitors. J. Eur. Ceram. Soc. 40, 2907–2916 (2020)

    Article  CAS  Google Scholar 

  8. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Ba0.4Sr0.6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line. Int. J. Appl. Ceram. Technol. 7, 124–128 (2009)

    Article  Google Scholar 

  9. M. Grace, R. Sambasivam, R. Perumal, V. Athikesavan, Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1–x[Bi0.5(Na0.4K0.1)(Ti1−xNbx)]O3−x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J. Aust. Ceram. Soc. 56, 157–165 (2020)

    Article  CAS  Google Scholar 

  10. Y. Huang, Y. Wu, W. Qiu, J. Li, X. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)

    Article  CAS  Google Scholar 

  11. Y. Wang, Y. Pu, Y. Cui, Y. Shi, H. Zheng, Enhanced energy storage density of Ba0.4Sr0.6TiO3 ceramics with additive of Bi2O3-B2O3-ZnO glass. Mater. Lett. 201, 203–206 (2017)

    Article  CAS  Google Scholar 

  12. J. Zhang, J. Zhai, H. Jiang, X. Yao, Raman and dielectric study of Ba0.4Sr0.6TiO3-MgAl2O4 tunable microwave composite. J. Appl. Phys. 104, 567–572 (2008)

    Google Scholar 

  13. Z. Song, H. Liu, Z. Wang et al., Effect of grain size on energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)

    Article  CAS  Google Scholar 

  14. B. Parija, T. Badapanda, S.K. Rout et al., Morphotropic phase boundary and electrical properties of 1–x[Bi0.5Na0.5]TiO3–xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877–4886 (2013)

    Article  CAS  Google Scholar 

  15. Y. Wang, Z. Shen, Y. Li et al., Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015)

    Article  CAS  Google Scholar 

  16. Z. Zheng, Y. Zhang, X. Wang, Q. Zhang, I. Baturin, Variation of DC breakdown strength with phase transition temperature in (Ba1-xSrx)TiO3 ceramics. Ferroelectrics 442, 115–122 (2013)

    Article  CAS  Google Scholar 

  17. Z. Song, H. Liu, M.T. Lanagan et al., Thermal annealing effects on the energy storage properties of BST ceramics. J. Am. Ceram. Soc. 100, 3550–3557 (2017)

    Article  CAS  Google Scholar 

  18. M. Zeng, J. Liu, H. Yu et al., NiNb2O6-BaTiO3 ceramics for energy-storage capacitors. Energy Technol. 6, 899–905 (2018)

    Article  CAS  Google Scholar 

  19. C. Diao, H. Liu, H. Hao, M. Cao, Z. Yao, Effect of SiO2 additive on dielectric response and energy storage performance of Ba0.4Sr0.6TiO3 ceramics. Ceram. Int. 42, 12639–12643 (2016)

    Article  CAS  Google Scholar 

  20. W. Li, D. Zhou, L. Pang, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110, 1329021–1329025 (2017)

    Google Scholar 

  21. L. Wu, X. Wang, L. Li, Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv. 6, 14273–14282 (2016)

    Article  CAS  Google Scholar 

  22. L. Zhang, L.X. Pang, W.B. Li, D. Zhou, Extreme high energy storage efficiency in perovskite structured (1–x) (Ba0.8Sr0.2)TiO3 - xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics. J. Eur. Ceram. Soc. 40, 3343–3347 (2020)

    Article  CAS  Google Scholar 

  23. F. Li, J. Zhai, B. Shen et al., Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 121, 054103 (2017)

    Article  Google Scholar 

  24. P.S. Dobal, A. Dixit, R.S. Katiyar et al., Micro-Raman study of Ba1-xSrxTiO3 ceramics. J. Raman Spectrosc. 32, 147–149 (2001)

    Article  CAS  Google Scholar 

  25. Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3-BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)

    Article  CAS  Google Scholar 

  26. D. Zheng, R. Zuo, D. Zhang et al., Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    Article  CAS  Google Scholar 

  27. K. Wang, A. Hussain, W. Jo, J. Rödel, Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 95, 2241–2247 (2012)

    Article  CAS  Google Scholar 

  28. H.B. Yang, F. Yan, Y. Lin, T. Wang, Improvement of dielectric and energy storage properties in SrTiO3-based lead-free ceramics. J. Alloys Compd. 728, 780–787 (2017)

    Article  CAS  Google Scholar 

  29. K.N. Singh, P.K. Bajpai, Dielectric relaxation in pure columbite phase of SrNb2O6 ceramic material: impedance analysis. WJCMP 1, 37–48 (2011)

    Article  CAS  Google Scholar 

  30. T. Shi, L. Xie, L. Gu, J. Zhu, Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3. Sci. Rep. 5, 8606 (2015)

    Article  CAS  Google Scholar 

  31. X. Jiang, H. Hao, S. Zhang et al., Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc. 39, 1103–1109 (2019)

    Article  CAS  Google Scholar 

  32. F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    Article  CAS  Google Scholar 

  33. M. Zhou, R. Liang, Z. Zhou, X. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528–8537 (2018)

    Article  CAS  Google Scholar 

  34. X.Y. Ye, Y.M. Li, J.J. Bian, Dielectric and energy storage properties of Mn-doped Ba0.3Sr0.475La0.12Ce0.03TiO3 dielectric ceramics. J. Eur. Ceram. Soc. 37, 107–114 (2017)

    Article  CAS  Google Scholar 

  35. F. Li, K. Yang, X. Liu et al., Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scr. Mater. 141, 15–19 (2017)

    Article  CAS  Google Scholar 

  36. G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J. Phys. Chem. C 118, 8564–8570 (2014)

    Article  CAS  Google Scholar 

  37. P. Ren, Q. Wang, S. Li, G. Zhao, Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS. J. Eur. Ceram. Soc. 37, 1501–1507 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (Chengdu, Sichuan, 610054, People’s of China) for their help in dielectric properties testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Li, H., Qing, Z. et al. Temperature stability of lead-free BST-BZN relaxor ferroelectric ceramics for energy storage capacitors. J Mater Sci: Mater Electron 32, 752–763 (2021). https://doi.org/10.1007/s10854-020-04854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04854-x

Navigation