Skip to main content
Log in

Enhancement of structure, dielectric and magnetic properties of nanocrystalline Mn–Zn ferrites using Ni–Ti ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work concerned with the effect of substitution of Fe3+ magnetic ion by magnetic and nonmagnetic ions together, Ni2+–Ti4+ ions. Ferrite samples with general formula Mn0.9Zn0.1NiyTiyFe2-2yO4 (0.0 < y ≤ 0.25) were prepared using conventional ceramic technique. Single phase cubic spinel structure of the studied samples was confirmed using X-ray diffraction pattern. The surface morphology and compositional features of the prepared samples were studied using scanning electron microscope (SEM) and EDAX measurements. The porosity and lattice parameter of the samples are calculated as a function of Ni–Ti concentration. Temperature, frequency and compositional dependence of the dielectric constant (ε`), ac resistivity (ρ) and dielectric loss tangent (tan δ) were studied. All the samples give the normal dielectric behavior of ferrites with temperature and frequency. The experimental results indicate that ε`, tan δ and ρ decrease as the frequency increase. This behavior was discussed on the basis of Maxwell–Wagner model and Koops theory. The imaginary part of dielectric modulus (M``) was calculated and plotted as a function of temperature. The hysteresis loop parameters were measured as a function of Ni–Ti content using VSM. The obtained results revealed that the dielectric properties of Mn–Zn ferrites enhanced by increasing Ni–Ti concentration where the ac resistivity increased 7 times and the dielectrics loss tangent reduced by 95% of un-substituted Mn–Zn ferrite. The present work indicates also that the sample Mn0.9Zn0.1Ni0.1Ti0.1Fe1.8O4 shows high ac resistivity, low dielectric loss and high magnetization and most suitable for microwave applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.E. Rady, H. Donya, Influence of gamma irradiation and Er3+ substitution on the structure, magnetic and electrical properties of Mn2+ substituted Ni–Zn ferrite. Indian J Phys. 92, 1515 (2018)

    Article  CAS  Google Scholar 

  2. R. Rani, G. Kumar, K.M. Batoo, M. Singh, Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique. Appl. Phys. A 115, 1401 (2014)

    Article  CAS  Google Scholar 

  3. F.L. Zabotto, A.J. Gualdi, J.A. Eiras, A.J. Aparecido de Oliveira, D. Garcia, Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mat. Res. 15, 428 (2012)

    Article  CAS  Google Scholar 

  4. M.A. Ahmed, K.E. Rady, K.M. El-Shokrofy, A.A. Arais, M.S. Shams, The influence of Zn2+ ions substitution on the microstructure and transport properties of Mn-Zn nanoferrites. Mater. Sci Appl. 5, 932 (2014)

    CAS  Google Scholar 

  5. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on Mn-Zn ferrites: Synthesis, characterization and applications. Ceram Int. 46, 15740 (2020)

    Article  CAS  Google Scholar 

  6. R.C. Bharamagoudar, J. Angadi, A.S. Patil, L.B. Kankanawadi, S.N. Mathad, Structural and dielectric properties of combustion-synthesized Mn-Zn nanoferrite. Inter. J. Self-Prop. High-Temp. Syn. 28, 132 (2019)

    Article  CAS  Google Scholar 

  7. K. Jalaiah, K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mate. 423, 275 (2017)

    Article  CAS  Google Scholar 

  8. S. Sanatombi, S. Sumitra, S. Ibetombi, Influence of sintering on the structural, electrical, and magnetic properties of Li-Ni-Mn-Zn ferrite synthesized by citrate precursor method. Iranian J. Sci. Tech, Tran. A: Sci. (2018). https://doi.org/10.1007/s40995-017-0405-8

    Article  Google Scholar 

  9. B. Sun, F. Chen, W. Yang, H. Shen, D. Xie, Effects of nano-TiO2 and normal size TiO2 additions on the microstructure and magnetic properties of manganese-zinc power ferrites. J. Magn. Magn. Mater. 349, 180 (2014)

    Article  CAS  Google Scholar 

  10. S.F. Wang, Y.F. Hsu, C.H. Chen, Effects of Nb2O5, TiO2, SiO2, and CaO additions on the loss characteristics of Mn-Zn Ferrite. J. Electroceramics. 33, 172 (2014)

    Article  Google Scholar 

  11. Y. Ying, Y. Gong, D. Liu, W. Li, J. Yu, L. Jiang, S. Che, Effect of MoO3Addition on the Magnetic Properties and Complex Impedance of Mn-Zn ferrites with high Bs and high initial permeability. J. Super. Nov. Magn. 30, 2129 (2017)

    Article  CAS  Google Scholar 

  12. N.S. Mitrović, B.S. Zlatkov, M.V. Nikolić, A.M. Maričić, O.S. Aleksić, S.R. Djukić, H. Danninger, Soft magnetic properties of Mn-Zn ferrites prepared by powder injection moulding. Sci. Sinter. 44, 355 (2012)

    Article  Google Scholar 

  13. F. Hua, C. Yin, H. Zhang, Q. Suo, X. Wang, H. Peng, Direct preparation of the nanocrystalline Mn-Zn ferrites by using oxalate as precipitant. J Mater. Scie. Chem. Engin. 3, 23 (2015)

    CAS  Google Scholar 

  14. J. Patel, K. Parekh, R.V. Upadhyay, Performance of Mn-Zn ferrite magnetic fluid in a prototype distribution transformer under varying loading conditions. Int. J. Therm. Sci. 114, 64 (2017)

    Article  CAS  Google Scholar 

  15. M. Latorre-Esteves, A. Cortés, M. Torres-Lugo, C. Rinaldi, Synthesis and characterization of carboxymethyl dextran-coated Mn-Zn ferrite for biomedical applications. J. Magn. Mag. Mater. 321, 3061 (2009)

    Article  CAS  Google Scholar 

  16. Z.G. Zheng, X.C. Zhong, Y.H. Zhang, H.Y. Yu, D.C. Zeng, Synthesis, structure and magnetic properties of nanocrystalline ZnxMn1-xFe2O4 prepared by ball milling. J. All. Comp. 466, 377 (2008)

    Article  CAS  Google Scholar 

  17. A. Saleem, Y. Zhang, H. Gong, MuhammadKMajeed, Xiao Lin, Electromagnetic wave absorption performance of Ni doped Cu-ferrite nanocrystals. Mater. Res. Express 7, 16117 (2020)

    Article  CAS  Google Scholar 

  18. K.E. Rady, R.A. Elsad, Improvement the physical properties of nanocrystalline Ni-Zn ferrite using the substitution by (Mg-Ti) ions. J. Magn. Magn. Mater. 498, 166195 (2020)

    Article  CAS  Google Scholar 

  19. M.A. Ahmed, S.T. Bishay, S.I. El-dek, G. Omar, Part II. Large scale applications of NixMn0.8−xMg0.2Fe2O4; 0.1 ≤ x ≤ 0.35 using laser irradiation. J. All. Comp. 509, 7891 (2011)

    Article  CAS  Google Scholar 

  20. N.K. Misra, R. Sati, R.N.P. Chowdhary, Mater. Lett. 24, 313 (1995)

    Article  CAS  Google Scholar 

  21. S. Bera, R.N.P. Chowdhary, J. Mater. Sci. Lett. 14, 568 (1995)

    Article  CAS  Google Scholar 

  22. K. Verma, A. Kumar, D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites. J. All. Comp. 526, 91 (2012)

    Article  CAS  Google Scholar 

  23. O.A. Desouky, K.E. Rady, Synthesis, structure and dielectric properties of nanocrystalline SnO2-CoO-Nb2O5 varistor doped with Cr2O3. J Mater Sci: Mater. Electron. 28, 4197 (2017)

    CAS  Google Scholar 

  24. J. Maxwell, Electricity and Magnetism Vol 1 (Oxford University Press, London, 1873), p. 328

    Google Scholar 

  25. K. Wagner, Ann. Phys. (Lipezig) 40, 817 (1913)

    Article  Google Scholar 

  26. C.G. Koop, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  27. M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Mater. Chem. Phys. 92, 310 (2005)

    Article  CAS  Google Scholar 

  28. P. Satya Gopal Rao, Rajesh Siripuram, Suresh Sripada, , Impedance analysis of TeO2-SeO2-Li2O nano glass system. Results in Physics. 13, 102133 (2019)

    Article  Google Scholar 

  29. Z.V. Mocanu, M. Airimioaei, C.E. Ciomaga, L. Curecheriu, F. Tudorache, S. Tascu, A.R. Iordan, N.M. Palamaru, L. Mitoseriu, Investigation of the functional properties of MgxNi1-xFe2O4 ceramics. J. Mater. Sci. 49, 3276 (2014)

    Article  CAS  Google Scholar 

  30. I. Mirebeau, G. Iancu, M. Hennion, G. Gaviolle, J. Hubsch, Phys. Rev. B. Condens. Matter. 54, 22 (1996)

    Article  Google Scholar 

  31. M.A. Ahmed, K.E. Rady, M.S. Shams, Enhancement of electric and magnetic properties of Mn–Zn ferrite by Ni–Ti ions substitution. J. All. Comp. 622, 269 (2015)

    Article  CAS  Google Scholar 

  32. C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, V.G. Harris, Structural and size dependent magnetic properties of single phase nanostructured gadolinium-iron-garnet under high magnetic field of tesla. J. Appl. Phys. Doi 10(1063/1), 3357326 (2010)

    Google Scholar 

  33. M.M. Hessien, M.M. Rashad, K. El-Barawy, I.A. Ibrahim, Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn–Zn ferrites. J. Magn. Magn. Mater. 320, 1615 (2008)

    Article  CAS  Google Scholar 

  34. M.A. Almessiere, A.D. Korkmaz, Y. Slimani, S. Nawaz, A.B. Ali, Magnetooptical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceram. Int. 45, 3449 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Rady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rady, K.E., Shams, M.S. Enhancement of structure, dielectric and magnetic properties of nanocrystalline Mn–Zn ferrites using Ni–Ti ions. J Mater Sci: Mater Electron 31, 22820–22832 (2020). https://doi.org/10.1007/s10854-020-04808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04808-3

Navigation