Skip to main content
Log in

A single-oscillator long-wave-length limit Sellmeier equation based fitting approach applied to the case of thin-film silicon and some of its more common alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A procedure for fitting a single-oscillator long-wave-length limit Sellmeier equation to refractive index experimental results is developed. This procedure involves employing a linear least-squares fit to the spectral dependence of the square of the refractive index over the spectral range for which the experimental data are both valid and sufficiently far away from the corresponding optical resonances. From the parameters acquired from these linear fits, the single-oscillator long-wave-length limit Sellmeier equation coefficients may be determined. Following its development, we then apply this approach to the case of thin-film silicon and two of its more common alloys with other materials. A contrast between the classical single-oscillator and double-oscillator Sellmeier equation based fits, as well as that offered through the use of a Cauchy equation based fit, is also provided as a coda to this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. A variety of alternate Sellmeier equation forms have been presented in the literature. In this analysis, however, we will just focus on the form depicted in Eq. (1).

  2. An attempt to directly fit \({n^{2} \left( {{E}_{{\text {ph}}}}\right) }\) to the form depicted in Eq. (6), i.e., to a parabolic form, may also be attempted, but it is not as clear and unambiguous as the previously mentioned linear least-squares fit approach.

  3. As no obvious “orthogonality” in the underlying functions exists, this systematic sweep approach appears to be the only way through which optimal coefficient values may be acquired, the usual Sellmeier equation coefficient selection approaches, i.e., educated guesses of the coefficient values and evaluations of the corresponding fit error, are typically sub-optimal.

References

  1. R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968)

    Article  CAS  Google Scholar 

  2. G. Weiser, D. Ewald, M. Milleville, J. Non-Cryst. Solids 35 & 36, 447–452 (1980)

    Article  Google Scholar 

  3. W. Paul, D.A. Anderson, Sol. Energy Mater. 5, 229–316 (1981)

    Article  CAS  Google Scholar 

  4. D.E. Aspnes, A.A. Studna, E. Kinsbron, Phys. Rev. B 29, 768–779 (1984)

    Article  Google Scholar 

  5. G.D. Cody, J. Non-Cryst. Solids 141, 3–15 (1992)

    Article  CAS  Google Scholar 

  6. D.T. Pierce, W.E. Spicer, Phys. Rev. Lett. 27, 1217–1220 (1971)

    Article  CAS  Google Scholar 

  7. W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, S.-J. Oh, Phys. Rev. B 31, 5187–5198 (1985)

    Article  CAS  Google Scholar 

  8. F. Stern, Phys. Rev. B 3, 2636–2645 (1971)

    Article  Google Scholar 

  9. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981)

    Article  CAS  Google Scholar 

  10. M.-C. Tsai, T.-C. Liao, I.-C. Lee, H.-C. Cheng, IEEE Electron Device Lett. 32, 904–906 (2011)

    Article  CAS  Google Scholar 

  11. B. Hekmatshoar, IEEE Electron Device Lett. 35, 545–547 (2014)

    Article  CAS  Google Scholar 

  12. J. Park, C. Shin, S. Lee, S. Kim, J. Jung, N. Balaji, V.A. Dao, Y.-J. Lee, J. Yi, Thin Solid Films 587, 132–136 (2015)

    Article  CAS  Google Scholar 

  13. H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Adv. Funct. Mater. 25, 3592–3598 (2015)

    Article  CAS  Google Scholar 

  14. H. Sai, T. Matsui, K. Matsubara, Phys. Status Solidi A 214, 1700544-1-11 (2017)

    Article  CAS  Google Scholar 

  15. N. Wyrsch, C. Ballif, Semicond. Sci. Technol. 31, 103005-1-15 (2016)

    Article  CAS  Google Scholar 

  16. A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, J. Appl. Phys. 92, 2424–2436 (2002)

    Article  CAS  Google Scholar 

  17. M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970)

    Article  Google Scholar 

  18. E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979)

    Article  CAS  Google Scholar 

  19. R.E. Viturro, K. Weiser, Philos. Mag. B 53, 93–103 (1986)

    Article  CAS  Google Scholar 

  20. R.V. Kruzelecky, C. Ukah, D. Racansky, S. Zukotynski, J.M. Perz, J. Non-Cryst. Solids 103, 234–249 (1988)

    Article  CAS  Google Scholar 

  21. H.V. Nguyen, Y. Lu, S. Kim, M. Wakagi, R.W. Collins, Phys. Rev. Lett. 74, 3880–3883 (1995)

    Article  CAS  Google Scholar 

  22. L. Jiao, I. Chen, R.W. Collins, C.R. Wronski, N. Hata, Appl. Phys. Lett. 72, 1057–1059 (1998)

    Article  CAS  Google Scholar 

  23. A. Kondilis, Phys. Rev. B 62, 10526–10534 (2000)

    Article  CAS  Google Scholar 

  24. B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001)

    Article  CAS  Google Scholar 

  25. S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001)

    Article  Google Scholar 

  26. D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002)

    Article  CAS  Google Scholar 

  27. L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006)

    Google Scholar 

  28. F. Orapunt, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 20, 1033–1038 (2009)

    CAS  Google Scholar 

  29. E. Malainho, M.I. Vasilevskiy, P. Alpuim, S.A. Filonovich, J. Appl. Phys. 106, 073110-1-9 (2009)

    Article  CAS  Google Scholar 

  30. J. Müllerová, L. Prušáková, M. Netrvalová, V. Vavruňková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010)

    Article  CAS  Google Scholar 

  31. F. Yuan, Z. Li, T. Zhang, W. Miao, Z. Zhang, Nanoscale Res. Lett. 9, 173-1-5 (2014)

    Google Scholar 

  32. F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016)

    Article  CAS  Google Scholar 

  33. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  34. W.-C. Chen, B.J. Feldman, J. Bajaj, F.-M. Tong, G.K. Wong, Solid State Commun. 38, 357–363 (1981)

    Article  CAS  Google Scholar 

  35. S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Phys. Rev. Lett. 57, 1777–1780 (1986)

    Article  CAS  Google Scholar 

  36. S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 51, 4143–4149 (1995)

    Article  Google Scholar 

  37. S.K. O’Leary, S. Zukotynski, J.M. Perz, Phys. Rev. B 52, 7795–7797 (1995)

    Article  Google Scholar 

  38. S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334–3340 (1997)

    Article  Google Scholar 

  39. S.K. O’Leary, P.K. Lim, J. Appl. Phys. 82, 3624–3626 (1997)

    Article  Google Scholar 

  40. S.M. Malik, S.K. O’Leary, Appl. Phys. Lett. 80, 790–792 (2002)

    Article  CAS  Google Scholar 

  41. S.K. O’Leary, S.M. Malik, J. Appl. Phys. 92, 4276–4282 (2002)

    Article  CAS  Google Scholar 

  42. S.K. O’Leary, J. Appl. Phys. 96, 3680–3686 (2004)

    Article  CAS  Google Scholar 

  43. F. Orapunt, S.K. O’Leary, J. Appl. Phys. 104, 073513-1-14 (2008)

    Article  CAS  Google Scholar 

  44. J.J. Thevaril, S.K. O’Leary, J. Appl. Phys. 107, 083105-1-6 (2010)

    Article  CAS  Google Scholar 

  45. J.J. Thevaril, S.K. O’Leary, Solid State Commun. 151, 730–733 (2011)

    Article  CAS  Google Scholar 

  46. J.J. Thevaril, S.K. O’Leary, J. Appl. Phys. 120, 135706-1-15 (2016)

    Article  CAS  Google Scholar 

  47. S.K. O’Leary, Appl. Phys. Lett. 82, 2784–2786 (2003)

    Article  CAS  Google Scholar 

  48. S.B. Minar, S. Moghaddam, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 30, 9964–9972 (2019)

    CAS  Google Scholar 

  49. A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986)

    Article  CAS  Google Scholar 

  50. A.R. Forouhi, I. Bloomer, Phys. Rev. B 38, 1865–1874 (1988)

    Article  CAS  Google Scholar 

  51. S. Adachi, Phys. Rev. B 43, 12316–12321 (1991)

    Article  CAS  Google Scholar 

  52. S. Adachi, J. Appl. Phys. 70, 2304–2308 (1991)

    Article  CAS  Google Scholar 

  53. W.A. McGahan, T. Makovicka, J. Hale, J.A. Woollam, Thin Solid Films 253, 57–61 (1994)

    Article  CAS  Google Scholar 

  54. G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371–373 (1996)

    Article  CAS  Google Scholar 

  55. G.K. Hubler, C.N. Waddell, W.G. Spitzer, J.E. Fredrickson, S. Prussin, R.G. Wilson, J. Appl. Phys. 50, 3294–3303 (1979)

    Article  CAS  Google Scholar 

  56. J.P. Lehan, P.C. Yu, D.L. Backfisch, J.P. Chambers, J. Appl. Phys. 92, 3608–3614 (2002)

    Article  CAS  Google Scholar 

  57. S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 15, 401–410 (2004)

    Google Scholar 

  58. S. Moghaddam, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 30, 1637–1646 (2019)

    CAS  Google Scholar 

  59. D.T. Pierce, W.E. Spicer, Phys. Rev. B 5, 3017–3029 (1972)

    Article  Google Scholar 

  60. R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982)

    Article  CAS  Google Scholar 

  61. D.R. McKenzie, N. Savvides, R.C. McPhedran, L.C. Botten, R.P. Netterfield, J. Phys. C 16, 4933–4944 (1983)

    Article  CAS  Google Scholar 

  62. A.S. Ferlauto, Ph. D. Thesis, The Pennsylvania State University (2001)

  63. S. Moghaddam, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 31, 212–225 (2020)

    CAS  Google Scholar 

  64. J. Singh (ed.), Optical Properties of Materials and their Applications, 2nd edn. (Wiley, Hoboken, 2020)

  65. S.K. O’Leary, P.K. Lim, Solid State Commun. 104, 17–21 (1997)

    Article  Google Scholar 

  66. L.E. Pell, Ph. D. Thesis, The University of Texas at Austin (2004)

  67. L. Mazzarella, Ph. D. Thesis, Universität at Berline, (2017)

  68. H.R. Philipp, J. Phys. Chem. Solids 32, 1935–1945 (1971)

    Article  CAS  Google Scholar 

  69. S. Moghaddam, F. Orapunt, M. Noël, J.C. Zwinkels, J.-M. Baribeau, D.J. Lockwood, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 31, 13186–13198 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and MITACS. Inspiring discussions with Mr. Calum Hughes, of Applied Corp., are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, S., O’Leary, S.K. A single-oscillator long-wave-length limit Sellmeier equation based fitting approach applied to the case of thin-film silicon and some of its more common alloys. J Mater Sci: Mater Electron 32, 397–419 (2021). https://doi.org/10.1007/s10854-020-04789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04789-3

Navigation