Skip to main content

Advertisement

Log in

Ternary heterojunctions catalyst of BiOCl nanosheets with the {001} facets compounded of Pt and reduced graphene oxide for enhancing photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photocatalytic activity of BiOCl have begun to attract much attention, and it is essential to construct a highly active BiOCl photocatalyst applicable to photocatalytic degradation for water purification. Here we reported a facile and novel fabrication of the ternary Pt-BiOCl/rGO hybrid photocatalysts and the photocatalyst was characterized by XRD, Raman, SEM, TEM, BET, XPS and PL. The characterization results prove that the Pt nanoparticles and reduced graphene oxide (rGO) is not only favorable to red shift of the absorption edge, but also could collect and transfer the electrons originated from BiOCl with exposed {001} facets, consequently enhance the separation efficiency of charges. Moreover, photocatalysis activity towards dye degradation under simulated solar irradiation reveal the Pt-BiOCl/rGO photocatalysts exhibits the highest significant efficiency among all samples for the RhB photodegradation, which is almost 1.3 times higher than that of pristine BiOCl. We further study the effect of dye concentration and effect of catalyst concentration under irradiation. We used the trapping experiment and total organic carbon (TOC), to explore the RhB degradation mechanism. The trapping experiment revealed that superoxide radicals (O2·) play a crucial role during the catalytic process. Based on the above research, we speculate that the excellent catalytic performance of Pt-BiOCl/rGO is attributed to the special ternary structure of the catalyst, which enable us conveniently to design and fabricate highly photoactive functional materials applicable to photocatalysis and solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. A. Fujishima, X. Zhang, D.A. Trykc, TiO2 photocatalysis and related surface phenomena. Surf. Sci Rep. 63(12), 515–582 (2008)

    Article  CAS  Google Scholar 

  3. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, Z. Zou, High-Yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 132, 14385–14387 (2010)

    Article  CAS  Google Scholar 

  4. X. Han, X. He, L. Sun, X. Han, W. Zhan, J. Xu, X. Wang, J. Chen, Increasing effectiveness of photogenerated carriers by in situ anchoring of Cu2O nanoparticles on a nitrogen-doped porous carbon yolk–shell cuboctahedral framework. ACS Catal. 8(4), 3348–3356 (2018)

    Article  Google Scholar 

  5. S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, Y. Liu, MoS2 Quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12(1), 751–758 (2018)

    Article  CAS  Google Scholar 

  6. L. Li, N. Sun, Y. Huang, Y. Qin, N. Zhao, J. Gao, M. Li, H. Zhou, L. Qi, Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 18(8), 1194–1201 (2008)

    Article  CAS  Google Scholar 

  7. Y. Chen, R. Huang, D. Chen, Y. Wang, W. Liu, X. Li, Z. Li, Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. ACS Appl. Mater. Interfaces 4(4), 2273–2279 (2012)

    Article  CAS  Google Scholar 

  8. Z. Lu, Z. Zhao, L. Yang, S. Wang, H. Liu, Y. Feng, Y. Zhao, F. Feng, A simple method for synthesis of highly efficient flower-like SnO2 photocatalyst nanocomposites. J. Mater. Sci. Mater. Electron. 30(1), 50–55 (2018)

    Article  Google Scholar 

  9. S. Jia, Y. Feng, Q. Zhan, D. Jiang, The solvothermal synthesis of novel β-Bi2O3/(BiO)4(OH)2CO3 heterojunctions and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 31(5), 4050–4057 (2020)

    Article  CAS  Google Scholar 

  10. R. Narzary, P. Phukan, S. Maity, P.P. Sahu, Enhancement of power conversion efficiency of Al/ZnO/p-Si/Al heterojunction solar cell by modifying morphology of ZnO nanostructure. J. Mater. Sci. Mater. Electron. 31(5), 4142–4149 (2020)

    Article  CAS  Google Scholar 

  11. G. Rajesh, S. Akilandeswari, D. Govindarajan, K. Thirumalai, Enhancement of photocatalytic activity of ZrO2 nanoparticles by doping with Mg for UV light photocatalytic degradation of methyl violet and methyl blue dyes. J. Mater. Sci. Mater. Electron. 31(5), 4058–4072 (2020)

    Article  CAS  Google Scholar 

  12. W. Ouyang, F. Teng, X. Fang, High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv. Funct. Mater. 28(16), 1707178–1707190 (2018)

    Article  Google Scholar 

  13. K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B Environ. 68(3–4), 125–129 (2006)

    Article  CAS  Google Scholar 

  14. T.B. Li, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans. 40(25), 6751–6758 (2011)

    Article  CAS  Google Scholar 

  15. J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv. 1(8), 1542–1553 (2011)

    Article  CAS  Google Scholar 

  16. H. Cheng, B. Huang, X. Qin, X. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem. Commun. 48(1), 97–99 (2012)

    Article  CAS  Google Scholar 

  17. Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014)

    Article  CAS  Google Scholar 

  18. C. Hao, Y. Xu, M. Bao, X. Wang, H. Zhang, T. Li, Hydrothermal synthesis of sphere-like BiOCl using sodium lignosulphonate as surfactant and its application in visible light photocatalytic degradation of rodamine B. J. Mater. Sci. Mater. Electron. 28(4), 3119–3127 (2016)

    Article  Google Scholar 

  19. X. Gu, Q. Yan, Y. Wei, Y. Luo, Y. Sun, D. Zhao, F. Ji, X. Xu, Visible-light-responsive photocatalyst with a microsphere structure: preparation and photocatalytic performance of CQDs@BiOCl. J. Mater. Sci. Mater. Electron. 30(17), 16321–16336 (2019)

    Article  CAS  Google Scholar 

  20. J. Shang, H. Chen, B. Zhao, F. Zhou, H. Zhang, X. Wang, Enhanced photocatalytic reduction activity of BiOCl nanosheets loaded on β-Bi2O3. J. Mater. Sci. Mater. Electron. 30(19), 17956–17962 (2019)

    Article  CAS  Google Scholar 

  21. S. Cao, C. Guo, Y. Lv, Y. Guo, Q. Liu, A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 20(27), 275702–275709 (2009)

    Article  Google Scholar 

  22. L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 47(24), 6951–6953 (2011)

    Article  CAS  Google Scholar 

  23. L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Increasing visible-light absorption for photocatalysis with black BiOCl. Phys. Chem. Chem. Phys. 14(1), 82–85 (2012)

    Article  CAS  Google Scholar 

  24. D.-H. Wang, G.-Q. Gao, Y.-W. Zhang, L.-S. Zhou, A.-W. Xu, W. Chen, Nanosheet-constructed porous BiOCl with dominant 001 facets for superior photosensitized degradation. Nanoscale 4(24), 7780–7785 (2012)

    Article  CAS  Google Scholar 

  25. S. Bai, X. Li, Q. Kong, R. Long, C. Wang, J. Jiang, Y. Xiong, Toward Enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection. Adv. Mater. 27(22), 3444–3452 (2015)

    Article  CAS  Google Scholar 

  26. L. Bai, F. Ye, L. Li, J. Lu, S. Zhong, S. Bai, Facet engineered interface design of plasmonic metal and cocatalyst on BiOCl nanoplates for enhanced visible photocatalytic oxygen evolution. Small 13(38), 1701607–1701620 (2017)

    Article  Google Scholar 

  27. H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 57(1), 122–138 (2018)

    Article  CAS  Google Scholar 

  28. K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J.J. Yin, Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 135(42), 15750–15753 (2013)

    Article  CAS  Google Scholar 

  29. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl. Catal. B Environ. 220, 290–302 (2018)

    Article  CAS  Google Scholar 

  30. F. Al Marzouqi, B. Al Farsi, A.T. Kuvarega, H.A.J. Al Lawati, S.M.Z. Al Kindy, Y. Kim, R. Selvaraj, Controlled microwave-assisted synthesis of the 2D-BiOCl/2D-g-C3N4 heterostructure for the degradation of amine-based pharmaceuticals under solar light illumination. ACS Omega 4(3), 4671–4678 (2019)

    Article  CAS  Google Scholar 

  31. C. Cao, L. Xiao, C. Chen, Q. Cao, Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 357, 1171–1179 (2015)

    Article  CAS  Google Scholar 

  32. D. Yue, D. Chen, Z. Wang, H. Ding, R. Zong, Y. Zhu, Enhancement of visible photocatalytic performances of a Bi2MoO6-BiOCl nanocomposite with plate-on-plate heterojunction structure. Phys. Chem. Chem. Phys. PCCP 16(47), 26314–26321 (2014)

    Article  CAS  Google Scholar 

  33. Q. Li, Z. Guan, D. Wu, X. Zhao, S. Bao, B. Tian, J. Zhang, Z-Scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustain. Chem. Eng. 5(8), 6958–6968 (2017)

    Article  CAS  Google Scholar 

  34. F. Deng, Q. Zhang, L. Yang, X. Luo, A. Wang, S. Luo, D.D. Dionysiou, Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl. Catal. B Environ. 238, 61–69 (2018)

    Article  CAS  Google Scholar 

  35. Y. Wang, J. Jin, W. Chu, D. Cahen, T. He, Synergistic effect of charge generation and separation in epitaxially grown BiOCl/Bi2S3 nano-heterostructure. ACS Appl. Mater. Interfaces 10(17), 15304–15313 (2018)

    Article  CAS  Google Scholar 

  36. S. Fang, Y. Zhou, H. Cui, Z. Li, S. Xu, L. Wang, Fabrication of BiOCl@CdS/Ag2CO3 heterojunctions with enhanced photocatalytic activity under visible-light irradiation. J. Mater. Sci. Mater. Electron. 28(19), 14575–14583 (2017)

    Article  CAS  Google Scholar 

  37. C. Zhao, Y. Liang, W. Li, X. Chen, Y. Tian, D. Yin, Q. Zhang, 3D BiOBr/BiOCl heterostructure microspheres with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 31(3), 1868–1878 (2019)

    Article  Google Scholar 

  38. E.A.C. Ferreira, N.F.A. Neto, A.A.G. Santiago, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Synthesis and characterization of α-Ag2MoO4/β-Ag2MoO4 heterostructure obtained by fast and simple ultrasonic spray pyrolysis method at different temperatures. J. Mater. Sci. Mater. Electron. 31(5), 4271–4278 (2020)

    Article  CAS  Google Scholar 

  39. M. Mousavi-Kamazani, M. Ghodrati, R. Rahmatolahzadeh, Fabrication of Z-scheme flower-like AgI/Bi2O3 heterojunctions with enhanced visible light photocatalytic desulfurization under mild conditions. J. Mater. Sci. Mater. Electron. 31(7), 5622–5634 (2020)

    Article  CAS  Google Scholar 

  40. Y. Wang, X. Li, Y. Yang, J. Yang, N. Zhang, X. Wu, X. Li, Visible light degradation and separation of RhB by magnetic Fe3O4/ZnO/g-C3N4 nanoparticles. J. Mater. Sci. Mater. Electron. 31(7), 5187–5197 (2020)

    Article  CAS  Google Scholar 

  41. R. Yang, Q. Zhao, B. Liu, Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light. J. Mater. Sci. Mater. Electron. 31(7), 5054–5067 (2020)

    Article  CAS  Google Scholar 

  42. H. Yu, S. Chen, X. Fan, X. Quan, H. Zhao, X. Li, Y. Zhang, A structured macroporous silicon/graphene heterojunction for efficient photoconversion. Angew. Chem. Int. Ed. 49(30), 5106–5109 (2010)

    Article  CAS  Google Scholar 

  43. X. Wang, H. Hu, S. Chen, K. Zhang, J. Zhang, W. Zou, R. Wang, One-step fabrication of BiOCl/CuS heterojunction photocatalysts with enhanced visible-light responsive activity. Mater. Chem. Phys. 158, 67–73 (2015)

    Article  CAS  Google Scholar 

  44. H. Li, J. Shi, K. Zhao, L. Zhang, Sustainable molecular oxygen activation with oxygen vacancies on the 001 facets of BiOCl nanosheets under solar light. Nanoscale 6(23), 14168–14173 (2014)

    Article  CAS  Google Scholar 

  45. R.M.A. Hameed, R.S. Amin, K.M. El-Khatib, A.E. Fetohi, Preparation and characterization of Pt–CeO2 /C and Pt–TiO2 /C electrocatalysts with improved electrocatalytic activity for methanol oxidation. Appl. Surf. Sci. 367, 382–390 (2016)

    Article  CAS  Google Scholar 

  46. A. Ofiarska, A. Pieczyńska, A. Fiszka Borzyszkowska, P. Stepnowski, E.M. Siedlecka, Pt–TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight. Chem. Eng. J. 285, 417–427 (2016)

    Article  CAS  Google Scholar 

  47. L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, Y. Wang, Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358(6369), 1419–1423 (2017)

    Article  CAS  Google Scholar 

  48. F. Wang, R.J. Wong, J.H. Ho, Y. Jiang, R. Amal, Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation. ACS Appl. Mater. Interfaces 9(36), 30575–30582 (2017)

    Article  CAS  Google Scholar 

  49. P. Wang, S. Zhan, Y. Xia, S. Ma, Q. Zhou, Y. Li, The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 207, 335–346 (2017)

    Article  CAS  Google Scholar 

  50. Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B Environ. 226, 360–372 (2018)

    Article  CAS  Google Scholar 

  51. N. Lakshmanareddy, V.N. Rao, K.K. Cheralathan, E.P. Subramaniam, M.V. Shankar, Pt/TiO2 nanotube photocatalyst - Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. J. Colloid Interface Sci. 538, 83–98 (2019)

    Article  CAS  Google Scholar 

  52. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  CAS  Google Scholar 

  53. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  CAS  Google Scholar 

  54. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  CAS  Google Scholar 

  55. B. Viswanathan, V. Chidaillbaraill, S. Chandravadanalll, On the nature of noble metal electrodes prepared using formaldehyde as reducing agent. Indian J. Chem. 43A, 706–709 (2004)

    CAS  Google Scholar 

  56. H.-C. Ma, X.-Z. Xue, J.-H. Liao, C.-P. Liu, W. Xing, Effect of borohydride as reducing agent on the structures and electrochemical properties of Pt/C catalyst. Appl. Surf. Sci. 252(24), 8593–8597 (2006)

    Article  CAS  Google Scholar 

  57. W. Wu, J. Cao, Y. Chen, T. Lu, Preparation of Pt/CMK-3 anode catalyst for methanol fuel cells using paraformaldehyde as reducing agent. Chin. J. Catal. 28(1), 17–21 (2007)

    Article  Google Scholar 

  58. Y. Tang, S. Miao, H.N. Pham, A. Datye, X. Zheng, B.H. Shanks, Enhancement of Pt catalytic activity in the hydrogenation of aldehydes. Appl. Catal. A Gen. 406(1–2), 81–88 (2011)

    Article  CAS  Google Scholar 

  59. H. Yu, C. Cao, X. Wang, J. Yu, Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles. J. Phys. Chem. C 121(24), 13191–13201 (2017)

    Article  CAS  Google Scholar 

  60. Y. Shinde, S. Wadhai, A. Ponkshe, S. Kapoor, P. Thakur, Decoration of Pt on the metal free RGO-TiO2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker. Int. J. Hydrogen Energy 43(8), 4015–4027 (2018)

    Article  CAS  Google Scholar 

  61. H.N. Abdelhamid, H.-F. Wu, Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140(5), 1555–1565 (2015)

    Article  CAS  Google Scholar 

  62. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  63. W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C 115(21), 10694–10701 (2011)

    Article  CAS  Google Scholar 

  64. W. Wang, D. Wang, W. Qu, L. Lu, A. Xu, Large ultrathin anatase TiO2 nanosheets with exposed 001 facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116(37), 19893–19901 (2012)

    Article  CAS  Google Scholar 

  65. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)

    Article  CAS  Google Scholar 

  66. S. Zhao, M. Li, M. Han, D. Xu, J. Yang, Y. Lin, N.-E. Shi, Y. Lu, R. Yang, B. Liu, Z. Dai, J. Bao, Defect-rich Ni3FeN nanocrystals anchored on n-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 28(18), 1706018–1706029 (2018)

    Article  Google Scholar 

  67. Z. Zou, H. Xu, D. Li, J. Sun, D. Xia, Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with 0 0 1 exposed reactive facets. Appl. Surf. Sci. 463, 1011–1018 (2019)

    Article  CAS  Google Scholar 

  68. D. Ma, J. Zhong, J. Li, L. Wang, R. Peng, Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight. Appl. Surf. Sci. 443, 497–505 (2018)

    Article  CAS  Google Scholar 

  69. M. Sun, Q. Zhao, C. Du, Z. Liu, Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv. 5(29), 22740–22752 (2015)

    Article  CAS  Google Scholar 

  70. L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009)

    Article  CAS  Google Scholar 

  71. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Research 7(10), 1528–1547 (2014)

    Article  CAS  Google Scholar 

  72. J. Flórez-Montaño, A. Calderón-Cárdenas, W. Lizcano-Valbuena, J.L. Rodríguez, E. Pastor, Ni@Pt nanodisks with low Pt content supported on reduced graphene oxide for methanol electrooxidation in alkaline media. Int. J. Hydrogen Energy 41(43), 19799–19809 (2016)

    Article  Google Scholar 

  73. L. Kong, Z. Jiang, H.H.C. Lai, T. Xiao, P.P. Edwards, Does noble metal modification improve the photocatalytic activity of BiOCl? Progress Nat. Sci. Mater. Int. 23(3), 286–293 (2013)

    Article  Google Scholar 

  74. C. Yu, F. Cao, G. Li, R. Wei, J.C. Yu, R. Jin, Q. Fan, C. Wang, Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Sep. Purif. Technol. 120, 110–122 (2013)

    Article  CAS  Google Scholar 

  75. X. Su, J. Yang, X. Yu, Y. Zhu, Y. Zhang, In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Appl. Surf. Sci. 433, 502–512 (2018)

    Article  CAS  Google Scholar 

  76. D. Wua, X. Wang, H. Wang, F. Wang, D. Wang, Z. Gao, X. Wang, F. Xu, K. Jiang, Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light. J. Colloid Interface Sci. 533, 539–547 (2019)

    Article  Google Scholar 

  77. H. Liu, Y. Su, Z. Chen, Z. Jin, Y. Wang, Graphene sheets grafted three-dimensional BiOBr 0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)

    Article  CAS  Google Scholar 

  78. G. Tang, J. Dong, K. Wu, W. Liang, D. Zhou, S. Ma, H. Tang, C. Li, Novel 3D flowerlike BiOCl0.7Br0.3 microspheres coupled with graphene sheets with enhanced visible-light photocatalytic activity for the degradation of rhodamine B. Ceram. Int. 42(5), 5607–5616 (2016)

    Article  CAS  Google Scholar 

  79. A.M. Alansi, M. Al-Qunaibit, I.O. Alade, T.F. Qahtan, T.A. Saleh, Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye. J. Mol. Liq. 253, 297–304 (2018)

    Article  CAS  Google Scholar 

  80. W. Yao, J. Zhang, Y. Wang, F. Ren, Hybrid density functional study on the mechanism for the enhanced photocatalytic properties of the ultrathin hybrid layered nanocomposite g-C3N4/BiOCl. Appl. Surf. Sci. 435, 1351–1360 (2018)

    Article  CAS  Google Scholar 

  81. L. Xu, H. Li, P. Yan, J. Xia, J. Qiu, Q. Xu, S. Zhang, H. Li, S. Yuan, Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J. Colloid Interface Sci. 483, 241–248 (2016)

    Article  CAS  Google Scholar 

  82. J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties. RSC Adv. 4(27), 14281 (2014)

    Article  CAS  Google Scholar 

  83. J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon Quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 7(36), 20111–20123 (2015)

    Article  CAS  Google Scholar 

  84. X. Zhang, X.-B. Wang, L.-W. Wang, W.-K. Wang, L.L. Long, W.-W. Li, H.-Q. Yu, Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing 001 facets. ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014)

    Article  CAS  Google Scholar 

  85. J. Lee, M. Islam, S. Kim, Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens. Actuators B Chem. 126(1), 73–77 (2007)

    Article  CAS  Google Scholar 

  86. H. Jiang, L. Li, S. Feng, W. Lu, Nanodiamond enhanced ZnO nanowire based UV photodetector with a high photoresponse performance. Phys. E Low-dimensional Syst. Nanostruct. 104, 314–319 (2018)

    Article  CAS  Google Scholar 

  87. M. Zhu, Q. Liu, W. Chen, Y. Yin, L. Ge, H. Li, K. Wang, Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging. ACS Appl. Mater. Interfaces 9(44), 38832–38841 (2017)

    Article  CAS  Google Scholar 

  88. B. Li, L. Shao, R. Wang, X. Dong, F. Zhao, P. Gao, Z. Li, Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols. J. Mater. Chem. A 6(15), 6344–6355 (2018)

    Article  CAS  Google Scholar 

  89. A. Di Bartolomeo, A. Grillo, F. Urban, L. Iemmo, F. Giubileo, G. Luongo, G. Amato, L. Croin, L. Sun, S.-J. Liang, L.K. Ang, Asymmetric Schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 28(28), 1800657–1800667 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Project (GZF2018XQNLW11) and Judicial Expertise Center Project (jdzxyb2018-03) of Gansu University of Political Science and Law.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongji Huang or Junling Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, X. & Zeng, J. Ternary heterojunctions catalyst of BiOCl nanosheets with the {001} facets compounded of Pt and reduced graphene oxide for enhancing photocatalytic activity. J Mater Sci: Mater Electron 32, 2667–2684 (2021). https://doi.org/10.1007/s10854-020-04758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04758-w

Navigation