Skip to main content
Log in

Fabrication of highly efficient organic light-emitting diode based on dysprosium-incorporated tris-(8-hydroxyquinoline)aluminum

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic light-emitting diodes (OLEDs) play a key role in modern display devices and systems. A highly desirable material for fabricating OLEDs is tris(8-hydroxyquinoline)aluminum (Alq3). In this work, a highly efficient OLED based on dysprosium (Dy)-incorporated Alq3 (Alq3-Dy) was fabricated. The fabricated OLED had four layers, namely, those of indium tin oxide (ITO), N, N′-Di(1-naphthyl)-N, N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), Alq3-Dy, and aluminum (Al). The ITO and Al layers were used as electrodes, while the NPB was selected as a hole transport layer. All the layers were deposited sequentially on a glass substrate. The surface morphologies of these layers clarified that the materials were deposited as nanosphere particles. The OLED performance showed significant improvement in terms of the operating voltage, current efficiency, and luminance of the fabricated Alq3-Dy OLED compared with that of the pure Alq3 OLED device. The luminance value was significantly enhanced from approximately 250 cd/m2 for the pure Alq3 OLED to approximately 5000 cd/m2 for the Alq3-Dy OLED. Moreover, the electroluminescence (EL) intensity of the Alq3-Dy OLED was 20 times higher than that of the Alq3 OLED. These findings may have a significant impact on the fabrication of the OLEDs and display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.V. Sánchez-Mendoza, V.G. Ibarra-García, J.R. Velázquez-Hernández, O.J. Hernández-Ortíz, J. Carrillo, L. Palacios-Huerta, I. Cosme, A. Alvarez-Hernandez, K. Alemán-Ayala, R.A. Vázquez-García, Synthesis, chemical, theoretical studies, electrochemical, electrical and optical characterization of novel oligomer 2,2’-((1E,1’E)(2,5-bis(octyloxy)-1,4-phenylenevinylene)bis(6-(E)-2-(vinylquinolin))quinoline for OLED applications. J. Mater. Sci. 30(22), 19718–19730 (2019). https://doi.org/10.1007/s10854-019-02322-9

    Article  CAS  Google Scholar 

  2. G.A. Sosa-Ortiz, V. Álvarez-Venicio, J.O. Guerra-Pulido, V.M. Velazquez-Aguilar, V.A. Basiuk, M.D.P. Carreón-Castro, Fabrication and characterization of an organic light-emitting diode based on Langmuir-Blodgett films using oligo(phenylenevinylene) derivatives. J. Mater. Sci. 31(1), 337–346 (2020). https://doi.org/10.1007/s10854-019-02527-y

    Article  CAS  Google Scholar 

  3. Q. Dong, F. Tai, H. Lian, B. Zhao, Z. Zhong, Z. Chen, J. Tang, F. Zhu, Realization of efficient light out-coupling in organic light-emitting diodes with surface carbon-coated magnetic alloy nanoparticles. Nanoscale 9(8), 2875–2882 (2017). https://doi.org/10.1039/C6NR09769C

    Article  CAS  Google Scholar 

  4. L. He, J. Liu, Z. Wu, D. Wang, S. Liang, X. Zhang, B. Jiao, D. Wang, X. Hou, Solution-processed small molecule thin films and their light-emitting devices. Thin Solid Films 518(14), 3886–3890 (2010). https://doi.org/10.1016/j.tsf.2009.11.002

    Article  CAS  Google Scholar 

  5. Z. Wang, Z. Chen, Z. Lan, X. Zhai, W. Du, Q. Gong, Enhancement of Alq3 fluorescence by nanotextured silver films deposited on porous alumina substrates. Appl. Phys. Lett. 90(15), 151119 (2007). https://doi.org/10.1063/1.2722231

    Article  CAS  Google Scholar 

  6. J.S. Jung, J.W. Lee, M.R. Seo, H.S. Lee, J. Kim, S.W. Lee, J. Joo, Luminescence variation of organic Alq3 nanoparticles on surface of Au nanoparticles and graphene. Synth. Met. 162(21), 1852–1857 (2012). https://doi.org/10.1016/j.synthmet.2012.08.005

    Article  CAS  Google Scholar 

  7. D.-J. Jan, S.-S. Wang, S.-J. Tang, K.-Y. Lin, J.-J. Yang, J.-L. Shen, K.-C. Chiu, Growth and characterization of tris(8-hydroxyquinoline)-aluminum molecular films. Thin Solid Films 520(3), 1005–1009 (2011). https://doi.org/10.1016/j.tsf.2011.08.005

    Article  CAS  Google Scholar 

  8. M.C. Tam, H. Su, K.S. Wong, X. Zhu, H.S. Kwok, Surface-plasmon-enhanced photoluminescence from metal-capped Alq3 thin films. Appl. Phys. Lett. 95(5), 051503 (2009). https://doi.org/10.1063/1.3190501

    Article  CAS  Google Scholar 

  9. Y. Kajiyama, K. Kajiyama, H. Aziz, Diffusion barriers for achieving controlled concentrations of luminescent dopants via diffusion for mask-less RGB color patterning of organic light emitting devices. Opt. Express 23(24), 30783–30792 (2015). https://doi.org/10.1364/OE.23.030783

    Article  CAS  Google Scholar 

  10. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001). https://doi.org/10.1038/35051047

    Article  CAS  Google Scholar 

  11. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512 (1999). https://doi.org/10.1126/science.283.5401.512

    Article  CAS  Google Scholar 

  12. B.W. D’Andrade, S.R. Forrest, White organic light-emitting devices for solid-state lighting. Adv. Mater. 16(18), 1585–1595 (2004). https://doi.org/10.1002/adma.200400684

    Article  CAS  Google Scholar 

  13. A.C. Grimsdale, K. Leok Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109(3), 897–1091 (2009). https://doi.org/10.1021/cr000013v

    Article  CAS  Google Scholar 

  14. J. Tagare, D.K. Dubey, R.A.K. Yadav, J.-H. Jou, S. Vaidyanathan, Triphenylamine-imidazole-based luminophores for deep-blue organic light-emitting diodes: experimental and theoretical investigations. Mater. Adv. 1(4), 666–679 (2020). https://doi.org/10.1039/D0MA00007H

    Article  CAS  Google Scholar 

  15. H. Peng, Z. Wei, L. Wu, X. Li, Efficient non-doped blue fluorescent OLEDs based on bipolar phenanthroimidazole-triphenylamine derivatives. Opt. Mater. 101, 109726 (2020). https://doi.org/10.1016/j.optmat.2020.109726

    Article  CAS  Google Scholar 

  16. J. Tagare, S. Vaidyanathan, Recent development of phenanthroimidazole-based fluorophores for blue organic light-emitting diodes (OLEDs): an overview. J. Mater. Chem. C 6(38), 10138–10173 (2018). https://doi.org/10.1039/C8TC03689F

    Article  CAS  Google Scholar 

  17. C. Cui, D.H. Park, J. Kim, J. Joo, D.J. Ahn, Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes. Chem. Commun. 49(47), 5360–5362 (2013). https://doi.org/10.1039/C3CC41255E

    Article  CAS  Google Scholar 

  18. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 65(9), 3610–3616 (1989). https://doi.org/10.1063/1.343409

    Article  CAS  Google Scholar 

  19. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987). https://doi.org/10.1063/1.98799

    Article  CAS  Google Scholar 

  20. P. Jiang, W. Zhu, Z. Gan, W. Huang, J. Li, H. Zeng, J. Shi, Electron transport properties of an ethanol-soluble AlQ3-based coordination polymer and its applications in OLED devices. J. Mater. Chem. 19(26), 4551–4556 (2009). https://doi.org/10.1039/B904389F

    Article  CAS  Google Scholar 

  21. H.-I. Baek, H.-K. Lee, C. Lee, Enhancement of the OLED driving stability by introducing an LiF-mixed α-NPD hole-transport layer, SPIE2006

  22. M.A. Mohd Sarjidan, S.H. Basri, W.H. Abd Majid, Fabrication and characterization of organic light-emitting diodes containing small molecules blends as emissive layer. Adv. Mater. Res. 795, 106–109 (2013). https://doi.org/10.4028/www.scientific.net/AMR.795.106

    Article  CAS  Google Scholar 

  23. G. Dasi, R. Ramarajan, K. Thangaraju, Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs. AIP Conf. Proc. 1942(1), 060015 (2018). https://doi.org/10.1063/1.5028785

    Article  CAS  Google Scholar 

  24. W.J. Lee, Y.K. Fang, H.-C. Chiang, S.F. Ting, S.F. Chen, W.R. Chang, C.Y. Lin, T.Y. Lin, W.D. Wang, S.C. Hou, J.-J. Ho, Improving turn on voltage and driving voltage of organic electroluminescent devices with nitrogen doped electron transporter. Solid-State Electron. 47(5), 927–929 (2003). https://doi.org/10.1016/S0038-1101(02)00393-3

    Article  CAS  Google Scholar 

  25. P.-C. Kao, J.-H. Lin, J.-Y. Wang, C.-H. Yang, S.-H. Chen, Li2CO3 as an n-type dopant on Alq3-based organic light emitting devices. J. Appl. Phys. 109(9), 094505 (2011). https://doi.org/10.1063/1.3585767

    Article  CAS  Google Scholar 

  26. N. Hai, Z. Bo, T. Xian-Zhong, Significant improvement of OLED efficiency and stability by doping both HTL and ETL with different dopant in heterojunction of polymer/small-molecules. Chin. Phys. 16(3), 730–734 (2007). https://doi.org/10.1088/1009-1963/16/3/028

    Article  Google Scholar 

  27. G. Xie, Y. Meng, F. Wu, C. Tao, D. Zhang, M. Liu, Q. Xue, W. Chen, Y. Zhao, Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoOx p-doping layer. Appl. Phys. Lett. 92(9), 093305 (2008). https://doi.org/10.1063/1.2890490

    Article  CAS  Google Scholar 

  28. N. Salah, S.S. Habib, Z.H. Khan, Highly luminescent material based on Alq3: Ag nanoparticles. J. Fluoresc. 23(5), 1031–1037 (2013). https://doi.org/10.1007/s10895-013-1230-x

    Article  CAS  Google Scholar 

  29. N.A.J. Salah, SA), Memic, Adnan (Jeddah, SA), Al-ghamdi, Attieh A. (Jeddah, SA), Algarni, Sabah Eid (Jeddah, SA), Khan, Zishan H. (New Delhi, IN), Method of making doped Alq3 nanostructures with enhanced photoluminescence, KING ABDULAZIZ UNIVERSITY (Jeddah, SA), United States (2018)

  30. N. Salah, S.S. Habib, Z.H. Khan, N.D. Alharbi, Synthesis and characterization of pure and Tb/Cu doped Alq3 nanostructures. J. Lumin. 143, 640–644 (2013). https://doi.org/10.1016/j.jlumin.2013.06.004

    Article  CAS  Google Scholar 

  31. A.P. Pushkarev, V.A. Ilichev, A.A. Maleev, A.A. Fagin, A.N. Konev, A.F. Shestakov, R.V. Rumyantzev, G.K. Fukin, M.N. Bochkarev, Electroluminescent properties of lanthanide pentafluorophenolates. J. Mater. Chem. C 2(8), 1532–1538 (2014). https://doi.org/10.1039/C3TC32054E

    Article  CAS  Google Scholar 

  32. K. Walzer, B. Männig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107(4), 1233–1271 (2007). https://doi.org/10.1021/cr050156n

    Article  CAS  Google Scholar 

  33. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23(8), 926–952 (2011). https://doi.org/10.1002/adma.201003128

    Article  CAS  Google Scholar 

  34. J.C.G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110(5), 2729–2755 (2010). https://doi.org/10.1021/cr900362e

    Article  CAS  Google Scholar 

  35. K. Binnemans, Lanthanide-based luminescent hybrid materials. Chem. Rev. 109(9), 4283–4374 (2009). https://doi.org/10.1021/cr8003983

    Article  CAS  Google Scholar 

  36. P. Dai, J. Lu, M. Tan, Q. Wang, Y. Wu, L. Ji, L. Bian, S. Lu, H. Yang, Transparent conducting indium-tin-oxide (ITO) film as full front electrode in III–V compound solar cell. Chin. Phys. B 26(3), 037305 (2017). https://doi.org/10.1088/1674-1056/26/3/037305

    Article  CAS  Google Scholar 

  37. M. Cuba, G. Muralidharan, Effect of thermal annealing on the structural and optical properties of tris-(8-hydroxyquinoline)aluminum(III) (Alq3) films. Luminescence 30(3), 352–357 (2015). https://doi.org/10.1002/bio.2738

    Article  CAS  Google Scholar 

  38. K. Narayan, S. Varadharajaperumal, G.M. Rao, M.M. Varma, T. Srinivas, Effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes. Curr. Appl. Phys. 13(1), 18–25 (2013). https://doi.org/10.1016/j.cap.2012.06.004

    Article  Google Scholar 

  39. S. Höfle, T. Lutz, A. Egel, F. Nickel, S.W. Kettlitz, G. Gomard, U. Lemmer, A. Colsmann, Influence of the emission layer thickness on the optoelectronic properties of solution processed organic light-emitting diodes. ACS Photon. 1(10), 968–973 (2014). https://doi.org/10.1021/ph500186m

    Article  CAS  Google Scholar 

  40. S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43(10), 3426–3452 (2014). https://doi.org/10.1039/C3CS60479A

    Article  CAS  Google Scholar 

  41. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys. Chem. B 107(3), 668–677 (2003). https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  42. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  CAS  Google Scholar 

  43. K. Togashi, S. Nomura, N. Yokoyama, T. Yasuda, C. Adachi, Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes. J. Mater. Chem. 22(38), 20689–20695 (2012). https://doi.org/10.1039/C2JM33669C

    Article  CAS  Google Scholar 

  44. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C.C. Byeon, S.-J. Park, Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 20(7), 1253–1257 (2008). https://doi.org/10.1002/adma.200701130

    Article  CAS  Google Scholar 

  45. D.-D. Zhang, R. Wang, Y.-Y. Ma, H.-X. Wei, Q.-D. Ou, Q.-K. Wang, L. Zhou, S.-T. Lee, Y.-Q. Li, J.-X. Tang, Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture. Org. Electron. 15(4), 961–967 (2014). https://doi.org/10.1016/j.orgel.2014.02.007

    Article  CAS  Google Scholar 

  46. S.T. Kochuveedu, D.H. Kim, Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6(10), 4966–4984 (2014). https://doi.org/10.1039/C4NR00241E

    Article  CAS  Google Scholar 

  47. S. Lambright, E. Butaeva, N. Razgoniaeva, T. Hopkins, B. Smith, D. Perera, J. Corbin, E. Khon, R. Thomas, P. Moroz, A. Mereshchenko, A. Tarnovsky, M. Zamkov, Enhanced lifetime of excitons in nonepitaxial Au/CdS core/shell nanocrystals. ACS Nano 8(1), 352–361 (2014). https://doi.org/10.1021/nn404264w

    Article  CAS  Google Scholar 

  48. T. Ming, H. Chen, R. Jiang, Q. Li, J. Wang, Plasmon-controlled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 3(2), 191–202 (2012). https://doi.org/10.1021/jz201392k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors in this project are very thankful for the Research & Consulting Institute at King Abdulaziz University, Jeddah, for their financial support under grant number M(MBD(08/017)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numan Salah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Alshahrie, A. & Salah, N. Fabrication of highly efficient organic light-emitting diode based on dysprosium-incorporated tris-(8-hydroxyquinoline)aluminum. J Mater Sci: Mater Electron 31, 22179–22189 (2020). https://doi.org/10.1007/s10854-020-04721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04721-9

Navigation