Skip to main content
Log in

Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A−1 was obtained with a maximum brightness of 40,623 cd m−2 and a power efficiency of 5.25 lm W−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  CAS  Google Scholar 

  2. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  PubMed  CAS  Google Scholar 

  3. Ning ZJ, Tian H (2009) Triarylamine: a promising core unit for efficient photovoltaic materials. Chem Commun 5483-5495

  4. Zhao ZJ, Li ZF, Lam JWY, Maldonado JL, Ramos-Ortiz G, Liu Y, Yuan WZ, Xu JB, Miao Q, Tang BZ (2011) High hole mobility of 1,2-bis[4’-(diphenylamino)biphenyl-4-yl]-1,2-diphenylethene in field effect transistor. Chem Commun 47:6924–6926

    Article  CAS  Google Scholar 

  5. Adachi C, Nagai K, Tamoto N (1995) Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 66:2679–2681

    Article  CAS  Google Scholar 

  6. Koene BE, Loy DE, Thompson ME (1998) Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices. Chem Mater 10:2235–2250

    Article  CAS  Google Scholar 

  7. Chan LH, Lee RH, Hsieh CF, Yeh HC, Chen CT (2002) Optimization of high-performance blue organic light-emitting diodes containing tetraphenylsilane molecular glass materials. J Am Chem Soc 124:6469–6479

    Article  PubMed  CAS  Google Scholar 

  8. Chu TY, Song OK (2007) Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents. Appl Phys Lett 90:203512

    Article  Google Scholar 

  9. Huang Q, Evmenenko GA, Dutta P, Lee P, Armstrong NR, Marks TJ (2005) Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. J Am Chem Soc 127:10227–10242

    Article  PubMed  CAS  Google Scholar 

  10. Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1994) Multilayered organic electroluminescent device using a novel starburst molecule, 4,4′,4′-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl Phys Lett 65:807

    Article  CAS  Google Scholar 

  11. Naito K, Miura A (1993) Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. J Phys Chem 97:6240–6248

    Article  CAS  Google Scholar 

  12. Fenter P, Schreiber F, Bulovic V, Forrest SR (1997) Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity. Chem Phys Lett 277:521–526

    Article  CAS  Google Scholar 

  13. Katsuma K, Shirota Y (1998) A novel class of π-electron dendrimers for thermally and morphologically stable amorphous molecular materials. Adv Mater 10:223–226

    Article  CAS  Google Scholar 

  14. Ichikawa M, Hibino K, Yokoyama N, Miki T, Koyama T, Taniguchi Y (2006) Solution-processable dendric triphenylamine nonamers as hole-transporting and hole-injection materials for organic light-emitting devices. Synth Met 156:1383–1389

    Article  CAS  Google Scholar 

  15. Tang CW, Vanskyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3616

    Article  CAS  Google Scholar 

  16. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  CAS  Google Scholar 

  17. Zhang XH, Chen BJ, Lin XQ, Wong OY, Lee CS, Kwong HL, Lee ST, Wu SK (2001) A new family of red dopants based on chromene-containing compounds for organic electroluminescent devices. Chem Mater 13:1565–1569

    Article  CAS  Google Scholar 

  18. Ye KQ, Wang J, Sun H, Liu Y, Mu ZC, Li F, Jiang SM, Zhang JY, Zhang HX, Wang Y, Che CM (2005) Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J Phys Chem B 109:8008–8016

    Article  PubMed  CAS  Google Scholar 

  19. Bi H, Ye KQ, Zhao YF, Yang Y, Liu Y, Wang Y (2010) Fluorinated quinacridone derivatives based organic light-emitting devices with high power efficiency. Org Electron 11:1180–1184

    Article  CAS  Google Scholar 

  20. Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng R 39:143–222

    Article  Google Scholar 

  21. Malliaras GG, Shen Y, Dunlap DH, Murata H, Kafafi ZH (2001) Nondispersive electron transport in Alq3. Appl Phys Lett 79:2582–2584

    Article  CAS  Google Scholar 

  22. Tse SC, Fong HH, So SK (2003) Electron transit time and reliable mobility measurements from thick film hydroxyquinoline-based organic light-emitting diode. J Appl Phys 94:2033–2037

    Article  CAS  Google Scholar 

  23. Tse SC, So SK, Yeung MY, Lo CF, Wen SW, Chen CH (2006) Experimental and theoretical demonstration on the transport properties of fused ring host materials for organic light-emitting diodes. Jpn J Appl Phys 45:555

    Article  CAS  Google Scholar 

  24. Tse SC, Kwok KC, So SK (2006) Electron transport in naphthylamine-based organic compounds. Appl Phys Lett 89:262102–262103

    Article  Google Scholar 

  25. Tsung KK, So SK (2008) Carrier trapping and scattering in amorphous organic hole transporter. Appl Phys Lett 92:103315–103313

    Article  Google Scholar 

  26. Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1994) Multilayered organic electroluminescent device using a novel starburst molecule, 4,4′,4′-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl Phys Lett 65:807

    Article  CAS  Google Scholar 

  27. VanSlyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162

    Article  CAS  Google Scholar 

  28. Deng ZB, Ding XM, Lee ST, Gambling WA (1999) Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers. Appl Phys Lett 74:2227–2229

    Article  CAS  Google Scholar 

  29. Jiang HJ, Zhou Y, Ooi BS, Chen YW, Wee T, Lam YL, Huang JS, Liu SY (2000) Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer. Thin Solid Films 363:25–28

    Article  CAS  Google Scholar 

  30. Qiu CF, Chen HY, Xie ZL, Wong M, Kwok HS (2002) Praseodymium oxide coated anode for organic light-emitting diode. Appl Phys Lett 80:3485–3487

    Article  CAS  Google Scholar 

  31. Kurosaka Y, Tada N, Ohmori Y, Yoshino K (1999) Improvement of metal-organic interface by insertion of mono-layer size insulating layer in organic EL device. Synth Met 102:1101–1102

    Article  CAS  Google Scholar 

  32. Chan IM, Hsu TY, Hong EC (2002) Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl Phys Lett 81:1899–1901

    Article  CAS  Google Scholar 

  33. Hu WP, Matsumura M, Furukawa K, Torimitsu K (2004) Oxygen plasma generated copper/copper oxides nanoparticles. J Phys Chem B 108:13116–13118

    Article  CAS  Google Scholar 

  34. Kwon J, Kwon TH, Cho HS, Kim MK, Shin IS, Shin DY, Park SJ, Hong JI (2008) Efficient blue phosphorescent host through nonbonded conformational locking interactions, New J. Chem 32:1368–1372

    CAS  Google Scholar 

  35. Aubouy L, Huby N, Hirsch L, van der Lee A, Gerbier P (2009) Molecular engineering to improve the charge carrier balance in single-layer silole-based OLEDs, New J. Chem. 33:1290–1300

    CAS  Google Scholar 

  36. Jayabharathi J, Thanikachalam V, Kalaiarasi V, Jayamoorthy K (2014) Intramolecular excited charge transfer, radiative and radiationless charge recombination processes in donor–acceptor imidazole derivatives. J Photochem Photobiol, A 275:114–126

    Article  CAS  Google Scholar 

  37. J. Jayabharathi, V. Thanikachalam, V. Kalaiarasi, K. Jayamoorthy, (2014), Optical properties of 1-(4,5-diphenyl-1-p-tolyl-1 H-imidazol-2-yl)naphthalen-2-ol – ESIPT process, spectrochim. Acta, Part A 120, 389–394

  38. Karunakaran C, Jayabharathi J, Kalaiarasi V, Jayamoorthy K (2014) Enhancing photoluminescent behavior of 2-(naphthalen-1-yl)-1,4,5-triphenyl-1 H-imidazole by ZnO and Bi 2 O 3 , spectrochim. Acta, Part A. 118:182–186

    Article  CAS  Google Scholar 

  39. Jayabharathi J, Kalaiarasi V, Thanikachalam V, Jayamoorthy K (2014) Dynamics of solvent controlled ESIPT of π-expanded imidazole derivatives - pH effect. J Fluoresc 24:625–637

    Article  CAS  Google Scholar 

  40. Jayabharathi J, Thanikachalam V, Ramanathan P, Arunpandiyan A (2014) Intramolecular excited proton transfer of 1-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol – a combined experimental and quantum chemical studies, spectrochim. Acta, Part A 121:551–558

    Article  CAS  Google Scholar 

  41. Jayabharathi J, Ramanathan P, Thanikachalam V, Arunpandiyan A (2014) Kamlet–Taft and catalán solvatochromism of some π-expanded phenanthrimidazole derivatives – DFT analysis, spectrochim. Acta, Part A. 133:201–206

    Article  CAS  Google Scholar 

  42. Jayabharathi J, Karunakaran C, Thanikachalam V, Ramanathan P (2014) Binding and fluorescence enhancing behaviour of phenanthrimidazole with different phases of TiO2. New J Chem 38:4321–4335

    Article  CAS  Google Scholar 

  43. Thanikachalam V, Arunpandiyan A, Jayabharathi J, Ramanathan P (2014) Photophysical properties of the intramolecular excited charge-transfer states of π-expanded styryl phenanthrimidazoles – effect of solvent. RSC adv 4:6790–6806

    Article  CAS  Google Scholar 

  44. Thanikachalam V, Jayabharathi J, Arunpandiyan A, Ramanathan P (2014) Structural, electronic and charge transfer studies of highly sensitive fluorescent probe 2-((E)-2-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)vinyl)phenol: quantum chemical investigations. J Fluoresc 24:377–387

    Article  CAS  Google Scholar 

  45. Yoshikatsu I, Teruo M (1979) Photochemical reaction of imidazoles with unsaturated nitriles. Chemistry of encounter complex and ion pair. J Organomet Chem 44:41–49

    Google Scholar 

  46. Jayabharathi J, Thanikachalam V, Saravanan K (2009) Effect of substituents on the photoluminescence performance of Ir(III) complexes: synthesis, electrochemistry and photophysical properties. J Photochem Photobiol A 208:13–20

    Article  CAS  Google Scholar 

  47. Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Srinivasan N (2011) Fluorescence resonance energy transfer from a bio-active imidazole derivative 2-(1-phenyl-1 H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol to a bioactive indoloquinolizine system, spectrochim. Acta, Part A. 79:236–244

    Article  CAS  Google Scholar 

  48. Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans 9:1583–1590

    Article  PubMed  Google Scholar 

  49. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, (2004), Gaussian 03 (Revision E.01), Gaussian, Inc., Wallingford, CT.

  50. Tao Y, Wang Q, Yang C, Zhong C, Zhang K, Qin J, Ma D (2010) Tuning the optoelectronic properties of carbazole/oxadiazole hybrids through linkage modes: hosts for highly efficient green electrophosphorescence. Adv Funct Mater 20:304–311

    Article  CAS  Google Scholar 

  51. Ranjan S, Lin SY, Hwang KC, Chi Y, Ching WL, Liu CS, Tao YT, Chien CH, Peng SM, Lee GH (2003) Realizing green phosphorescent light-emitting materials from rhenium (I) pyrazolato diimine complexes. Inorg Chem 42:1248–1255

    Article  PubMed  CAS  Google Scholar 

  52. Lin SL, Chan LH, Lee RH, Yen MY, Kuo WJ, Chen CT, Jeng RJ (2008) Highly efficient carbazole-π-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes. Adv Mater 20:3947–3952

    Article  CAS  Google Scholar 

  53. Kulkarni AP, Gifford AP, Tonzola CJ, Jenekhe SA (2005) Efficient blue organic light-emitting diodes based on an oligoquinoline. Appl Phys Lett 86:061106–061103

    Article  Google Scholar 

  54. Yu WL, Pei J, Cao Y, Huang W (2001) Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. J Appl Phys 89:2343–2350

    Article  CAS  Google Scholar 

  55. Staudigel J, Stossel M, Steuber F, Simmerer J (1999) A quantitative numerical model of multilayer vapor-deposited organic emitting diodes. J Appl Phys 86:3895–3910

    Article  CAS  Google Scholar 

  56. Kawabe Y, Abe J (2002) Electron mobility measurement using exciplex-type organic light-emitting diodes. Appl Phys Lett 81:493–495

    Article  CAS  Google Scholar 

  57. Lee MT, Chen HH, Liao CH, Tsai CH, Chen CH (2004) Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-napthyl)anthracene. Appl Phys Lett 85:3301–3303

    Article  CAS  Google Scholar 

  58. Tong QX, Lai SL, Chan MY, Zhou YC, Kwong HL, Lee CS, Lee ST (2009) A high performance nondoped blue organic light-emitting device based on a diphenylfluoranthene-substituted fluorene derivative. J Phys Chem C 113:6227–6230

    Article  CAS  Google Scholar 

  59. Wang Q, Oswald IWH, Perez MR, Jia H, Shahub AA, Qiao Q, Gnade BE, Omary MA (2014) Doping-free organic light-emitting diodes with very high power efficiency, simple device structure, and superior spectral performance. Adv Funct Mater 24:4746–4752

    Article  CAS  Google Scholar 

  60. Wang Q, Oswald IWH, Perez MR, Jia HP, Gnade BE, Omary MA (2013) Exciton and polaron quenching in doping-free phosphorescent organic light-emitting diodes from a Pt(II)-based fast phosphor. Adv Funct Mater 23:5420–5428

    Article  CAS  Google Scholar 

  61. Fan C, Yang C (2010) Management of charges and excitons for high-performance white organic light-emitting diodes. Chem Soc Rev 39:2387–2398

    Article  Google Scholar 

  62. Wang Q, Ding J, Ma D, Cheng Y, Wang L, Jing X, Wang F (2009) Harvesting excitons Via two parallel channels for efficient white organic LEDs with nearly 100 % internal quantum efficiency: fabrication and emission-mechanism analysis. Adv Funct Mater 19:84–95

    Article  Google Scholar 

  63. Wang BQ, Ding J, Ma D, Cheng Y, Wang L, Wang F (2009) Manipulating charges and excitons within a single-host system to accomplish efficiency/CRI/color-stability trade-off for high-performance OWLEDs. Adv Mater 21:2397–2401

    Article  CAS  Google Scholar 

  64. Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of triplet-triplet annihilation Transient analysis of organic electrophosphorescence. II.,. Phys Rev B 62:10967

    Article  CAS  Google Scholar 

  65. Reineke S, Walzer K, Leo K (2007) Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys Rev B 75:125328

    Article  Google Scholar 

  66. Song D, Zhao S, Luo Y, Aziz H (2010) Causes of efficiency roll-off in phosphorescent organic light emitting devices: triplet-triplet annihilation versus triplet-polaron quenching. Appl Phys Lett 97:243304

    Article  Google Scholar 

  67. Zhang Y, Lai SL, Tong QX, Chan MY, Ng TW, Wen ZC, Zhang GQ, Lee ST, Kwonge HL, Lee CS (2011) Synthesis and characterization of phenanthroimidazole derivatives for applications in organic electroluminescent devices. J Mater Chem 21:8206–8214

    Article  CAS  Google Scholar 

  68. Yuan Y, Li D, Zhang X, Zhao X, Liu Y, Zhang J, Wang Y (2011) Phenanthroimidazole-derivative semiconductors as functional layer in high performance OLEDs. New J Chem 35:1534–1540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Prof. J. Jayabharathi is thankful to DST (No. SR/S1/IC-73/2010), DRDO (NRB-213/MAT/10-11), UGC (F. No. 36-21/2008 (SR)) and CSIR (NO 3732/NS-EMRII) for providing funds to this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Jayabharathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayabharathi, J., Ramanathan, P., Karunakaran, C. et al. Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs. J Fluoresc 26, 307–316 (2016). https://doi.org/10.1007/s10895-015-1715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1715-x

Keywords

Navigation