Skip to main content
Log in

Effect of metalation on some graphene nanoribbons for potential application as donor in organic photovoltaic cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work is a systematic and theoretical study performed on three organometallic p-conjugated molecules based on graphene nanoribbons (GNRs) to act as potential donor material in organic photovoltaic cells, using the rhf, b3lyp and bpbe methods together with the 6–31 + g(d,p) basis. Analysis is made on HOMO, LUMO, bandgap, reorganization energy, open circuit voltage, the driving force, and nonlinear optical properties. These organic photovoltaic properties are predicted with the aid of PCBM as modelled acceptor. Results reveal positive agreement with traditional classical and experimental organic values, presenting the fact that metalated GNRs may be used as an effective and potential donor of electron in organic Bulk Heterojunction solar cells, owing to its enhanced nonlinear and photovoltaic properties. The values obtained for the reorganization energy, driving force and nonlinear optical properties are promissory properties that may be directly implemented in the investigated photovoltaic material. The power conversion efficiency obtained for Rb-perylene is seen to be around the maximum current value for organic photovoltaic cell. Rb-perylene shows the best organic photovoltaic properties followed by k-azulene then k-phenanthrene. The methodological approach offered in this research might aid in computer assisted-design of OPV materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.W.W. Yam, WOLEDs and Organic Photovoltaics (Springer, Heidelberg, 2010)

    Google Scholar 

  2. A. Marti Green, D. Ewan Dunlop, Prog. Photovolt. 27(7), 565–575 (2019)

    Google Scholar 

  3. J.F. Geisz, M.A. Steiner, N. Jain, IEEE J. Photovolt. 8(2), 626–632 (2018)

    Google Scholar 

  4. G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, Sol. Energy Mater. Sol. Cells 92(4), 371–373 (2008)

    CAS  Google Scholar 

  5. F. Padinger, R.S. Rittberger, N.S. Sariciftci, Adv. Funct. Mater. 13, 85–88 (2003)

    CAS  Google Scholar 

  6. C.J. Ko, Y.K. Lin, F.C. Chen, C.W. Chu, Appl. Phys. Lett. 90(6), 063509 (2007)

    Google Scholar 

  7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Nat. Mater. 4(11), 864–868 (2005)

    CAS  Google Scholar 

  8. H. Yao, Y. Cui, D. Qian, S. Carlito, J. Am. Chem. Soc. 141(19), 7743–7750 (2019)

    CAS  Google Scholar 

  9. M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87(8), 083506 (2005)

    Google Scholar 

  10. Y. Li, J.D. Lin, X. Che, Y. Qu, F. Liu, L.S. Liao, J. Am. Chem. Soc. 139(47), 17114–17119 (2017)

    CAS  Google Scholar 

  11. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Google Scholar 

  12. K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, Chem. Commun. 13, 1173–1174 (2000)

    Google Scholar 

  13. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Adv. Funct. Mater. 11(1), 15–26 (2001)

    CAS  Google Scholar 

  14. Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem. Rev. 109(11), 5868–5923 (2009)

    CAS  Google Scholar 

  15. Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, Nat. Commun. 10, 2515 (2019)

    Google Scholar 

  16. S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107(4), 1324–1338 (2007)

    Google Scholar 

  17. R.S. Kularatne, H.D. Magurudeniya, P. Sista, M.C. Biewer, M.C. Stefan, J. Polym. Sci. Part A 51, 743–768 (2013)

    CAS  Google Scholar 

  18. S.B. Darling, F. You, RSC Adv. 3, 17633 (2013)

    CAS  Google Scholar 

  19. Y. Cui, H. Yao, L. Hong, T. Zhang, Adv. Mat. Commun. 31(14), 1808356 (2019)

    Google Scholar 

  20. N. Yeh, P. Yeh, Renew. Sustain. Energy Rev. 21, 421–431 (2013)

    CAS  Google Scholar 

  21. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Energy Environ. Sci. 5(8), 8208–8214 (2012)

    CAS  Google Scholar 

  22. X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Adv. Mat. 24(22), 3046–3052 (2012)

    CAS  Google Scholar 

  23. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mat. 23(40), 4636–4643 (2011)

    CAS  Google Scholar 

  24. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photon 6, 591–595 (2012)

    Google Scholar 

  25. H. Paul, C. David, B.P. Rand, Acc. Chem. Res. 42(11), 1740–1747 (2009)

    Google Scholar 

  26. M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, Nanotechnology 19, 42 (2008)

    Google Scholar 

  27. J. Roncali, Macromol. Rapid Commun. 28(17), 1761–1775 (2007)

    CAS  Google Scholar 

  28. N. Venkatram, M.A. Akundi, D. Narayana Rao, Opt. Exp. 13, 867–872 (2005)

    CAS  Google Scholar 

  29. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, Nat. Mater. 6, 652–655 (2007)

    CAS  Google Scholar 

  30. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    CAS  Google Scholar 

  31. T.J. Echtermeyer, M.C. Lemme, M. Baus, B.N. Szafranek, A.K. Geim, H. Kurz, IEEE Electron Device Lett. 29, 952 (2008)

    CAS  Google Scholar 

  32. J.-S.K. Yu, C.-H. Yu, J. Phys. Chem. A 107, 4268–4275 (2003)

    CAS  Google Scholar 

  33. J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, J. Org. Chem. 60(3), 532–538 (1995)

    CAS  Google Scholar 

  34. M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mat. 18(6), 789–794 (2006)

    CAS  Google Scholar 

  35. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    CAS  Google Scholar 

  36. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785–789 (1988)

    CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    CAS  Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al., Gaussian 09, Revision B.01 (Gaussian Inc, Wallingford CT, 2009)

    Google Scholar 

  40. R. Dennington, T. Keith, J. Milam, GaussView, Version 5 (Semichem Inc., Shawnee Mission KS, 2009)

    Google Scholar 

  41. N.K. Nkungli, J.N. Ghogomu, J. Theor. Chem. 1, 11 (2016). https://doi.org/10.1155/2016/7909576

    Article  Google Scholar 

  42. C. Herliette, A. Alongamo, N.K. Nkungli, J.N. Ghogomu, J. Mol. Phys. 117(18), 2577–2592 (2019)

    Google Scholar 

  43. P. Ranjan, P. Verma, S. Agrawal, T.R. Rao, S.K. Samanta, A.D. Thakur, Mat. Chem. Phys. 226, 350–355 (2019)

    CAS  Google Scholar 

  44. G.W. Ejuh, F. TchangnwaNya, N. Djongyang, J.M.B. Ndjaka, SN Appl. Sci. 2, 1247 (2020)

    CAS  Google Scholar 

  45. G.W. Ejuh, F. Tchangnwa Nya, N. Djongyang, J.M.B. Ndjaka, Opt. Quant. Electron. 50(9), 336 (2018)

    Google Scholar 

  46. A.H. Reshak, N.M. Abbass, J. Bíla, M.R. Johan, I. Kityk, J. Phys. Chem. C 123(44), 27172–27180 (2019)

    CAS  Google Scholar 

  47. M. Stolterfoht, P. Caprioglio, Energy Environ. Sci. 12, 2778–2788 (2019)

    CAS  Google Scholar 

  48. S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, J. Am. Chem. Soc. 141(14), 5781–5787 (2019)

    CAS  Google Scholar 

  49. S.S. Shin, J.H. Suk, B.J. Kang, W. Yin, S.J. Lee, Energy Environ. Sci. 12, 958–964 (2019)

    CAS  Google Scholar 

  50. A. Guillen-Lopez, M. Robles, J. Muniz, Theor. Chem. Acc. 137(85), 1432–2234 (2018)

    Google Scholar 

  51. B.P. Rand, D.P. Burk, S.R. Forrest, Phys. Rev. B 75(11), 115327 (2007)

    Google Scholar 

  52. Q.Q. Pan, S.B. Li, Y. Wu, G. Sun, Y. Geng, Z.M. Su, RSC Adv. 6, 81164–81173 (2016)

    CAS  Google Scholar 

  53. D. Mhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mat. 18(21), 2884–2889 (2006)

    Google Scholar 

  54. D. Wang, X. Zhang, W. Ding, X. Zhao, Comput. Theory Chem. 1029, 68–78 (2014)

    CAS  Google Scholar 

  55. M. Sui, S. Li, Q. Pan, G. Sun, Y. Geng, J. Mol. Model 23(28), 1610–2940 (2017)

    Google Scholar 

  56. Y.A. Duan, Y. Geng, H.B. Li, J.L. Jin, Y. Wu, Z.M. Su, J. Comput. Chem. 34(19), 1611–1619 (2013)

    CAS  Google Scholar 

  57. J.D. Huang, W.L. Li, S.H. Wen, B. Dong, J. Comput. Chem. 36(10), 695–706 (2015)

    CAS  Google Scholar 

  58. V. Lemaur, M. Steel, D. Beljonne, J.L. Brédas, J. Am. Chem. Soc. 127(16), 6077–6086 (2005)

    CAS  Google Scholar 

  59. N.E. Gruhn, D.A. da Silva Filho, T.G. Bill, M. Malagoli, V. Coropceanu, A. Kahn, J.L. Brédas, J. Am. Chem. Soc. 124(27), 7918–7919 (2002)

    CAS  Google Scholar 

  60. J.R. Reimers, J. Chem. Phys. 115(20), 9103–9109 (2001)

    CAS  Google Scholar 

  61. V.T.T. Huong, H.T. Nguyen, M.T. Nguyen, J. Phys. Chem. C 117(19), 10175–10184 (2013)

    CAS  Google Scholar 

  62. T. Mohr, V. Aroulmoji, R.S. Ravindran, M. Muller, S. Ranjitha, G. Rajarajan, P. Anbarasan, Spectrochim. Acta Mol. Biomol Spectrosc. 135, 1066–1073 (2015)

    CAS  Google Scholar 

  63. A. Francisco, M.G. SantosaLuis, D. AbegãoafRuben, Fonseca. J. Photochem. Photobiol. A 369, 70–76 (2019)

    Google Scholar 

  64. C. Yang, J. Zhang, N. Liang, H. Yao, J. Mater. Chem. A 32(7), 18889–18897 (2019)

    Google Scholar 

  65. M. Horie, J. Kettle, C.Y. Yu, L.A. Majewski, S.W. Chang, J. Kirkpatrick, S.M. Tuladhar, J. Mater. Chem. 22, 381–389 (2012)

    CAS  Google Scholar 

  66. K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J. Manca, O. Inganäs, J. Am. Chem. Soc. 131(33), 11819–11824 (2009)

    CAS  Google Scholar 

  67. D.B. Staple, P.A.K. Oliver, I.G. Hill, Phys. Rev. B 89(20), 1719 (2014)

    Google Scholar 

  68. H. Alyar, Rev. Adv. Mater. Sci. 34(1), 79–87 (2013)

    CAS  Google Scholar 

  69. R.A. Marcus, Rev. Mod. Phys. 65(3), 599 (1993)

    CAS  Google Scholar 

  70. R.A. Marcus, Annu. Rev. Phys. Chem. 15(1), 155–196 (1964)

    CAS  Google Scholar 

  71. M. Bourass, A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, F. Jhilal, F. Serein-Spirau, J. Saudi Chem. Soc. 21, 563–574 (2017)

    CAS  Google Scholar 

  72. R. Jin, K. Lia, X. Hana, RSC Adv. 9, 22597–22603 (2019)

    CAS  Google Scholar 

  73. M. Senge, M. Fazekas, E. Notaras, W. Blau, M. Zawadzka, Adv. Mater. 19(19), 2737–2774 (2007)

    CAS  Google Scholar 

  74. M.D. Balanay, O.H. Kim, Curr. Appl. Phys. 11, 109–116 (2011)

    Google Scholar 

  75. C.R. Zhang, Z.J. Liu, Y.H. Chen, H.S. Chen, Y.Z. Wu, Curr.. Appl. Phys. 10(1), 77–83 (2010)

    CAS  Google Scholar 

  76. C.R. Zhang, Z.J. Liu, Y.H. Chen, H.S. Chen, Y.Z. Wu, J. Mol. Struct. Theochem. 899, 86–93 (2010)

    Google Scholar 

  77. C.C. Fonkem, G.W. Ejuh, F. Tchangnwa Nyad, R.A. Yossa Kamsia, Chin. J. Phys. 63, 207–212 (2020)

    CAS  Google Scholar 

  78. C. Karthika, S.R. SarathKumar, L. Kathuria, Phys. Chem. Chem. Phys. 21, 11079–11086 (2019)

    CAS  Google Scholar 

  79. H. Tanak, A.A. Agar, O. Buyukgungor, Spectrochim. Acta Part A 118(29), 672–682 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR), India for financial support through Emeritus Professor scheme (Grant No. 21(0582)/03/EMR-II) to Late Prof. A.N. Singh of the Physics Department, Bahamas Hindu University, India which enabled him to purchase the Gaussian Software. We are most grateful to late Emeritus Prof. A.N. Singh for donating this software to one of us Prof. Geh Wilson Ejuh and to the Materials Science Laboratory of the University of Yaoundé I for enabling us use their computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Ejuh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest as concern this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mainimo, E., Ejuh, G.W. & Ndjaka, J.M.B. Effect of metalation on some graphene nanoribbons for potential application as donor in organic photovoltaic cells. J Mater Sci: Mater Electron 31, 21923–21933 (2020). https://doi.org/10.1007/s10854-020-04696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04696-7

Navigation